cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A243740 Number of compositions of n with exactly five occurrences of the largest part.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 253, 468, 819, 1385, 2317, 3928, 6908, 12803, 25079, 51415, 108598, 232784, 500780, 1073700, 2285703, 4822956, 10082161, 20884730, 42892750, 87405633, 176867184, 355685658, 711460052, 1416584340, 2809770487, 5555833511
Offset: 5

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 09 2014

Keywords

Crossrefs

Column k=5 of A238341.

Programs

  • Maple
    b:= proc(n, p, i) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
        end:
    a:= proc(n) local k; k:=5;
          add(b(n-i*k, k, i-1)/k!, i=1..n/k)
        end:
    seq(a(n), n=5..50);
  • Mathematica
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=5; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 5, 40}] (* Jean-François Alcover, Feb 10 2015, after Maple *)

A243741 Number of compositions of n with exactly six occurrences of the largest part.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 925, 1723, 3038, 5145, 8498, 13930, 23143, 39859, 72500, 140266, 286678, 609217, 1323197, 2897511, 6339636, 13787488, 29726648, 63472185, 134190162, 280988786, 583076160, 1199816068, 2449963412, 4967798570, 10009806563
Offset: 6

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 09 2014

Keywords

Crossrefs

Column k=6 of A238341.

Programs

  • Maple
    b:= proc(n, p, i) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
        end:
    a:= proc(n) local k; k:=6;
          add(b(n-i*k, k, i-1)/k!, i=1..n/k)
        end:
    seq(a(n), n=6..50);
  • Mathematica
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=6; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 6, 40}] (* Jean-François Alcover, Feb 10 2015, after Maple *)

A243742 Number of compositions of n with exactly seven occurrences of the largest part.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3433, 6443, 11484, 19640, 32550, 52860, 85296, 139249, 235001, 418473, 795544, 1610418, 3421514, 7489962, 16625389, 37003313, 82024320, 180421399, 393126594, 848051064, 1811227670, 3831269241, 8030748161
Offset: 7

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 09 2014

Keywords

Crossrefs

Column k=7 of A238341.

Programs

  • Maple
    b:= proc(n, p, i) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
        end:
    a:= proc(n) local k; k:=7;
          add(b(n-i*k, k, i-1)/k!, i=1..n/k)
        end:
    seq(a(n), n=7..50);
  • Mathematica
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=7; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 7, 40}] (* Jean-François Alcover, Feb 10 2015, after Maple *)

A243743 Number of compositions of n with exactly eight occurrences of the largest part.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12871, 24319, 43812, 75837, 127005, 207252, 332343, 529617, 851797, 1410484, 2456794, 4572624, 9116790, 19248417, 42237738, 94608183, 213426424, 480788350, 1076330078, 2388681769, 5249788389
Offset: 8

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 09 2014

Keywords

Crossrefs

Column k=8 of A238341.

Programs

  • Maple
    b:= proc(n, p, i) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
        end:
    a:= proc(n) local k; k:=8;
          add(b(n-i*k, k, i-1)/k!, i=1..n/k)
        end:
    seq(a(n), n=8..50);
  • Mathematica
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=8; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 8, 50}] (* Jean-François Alcover, Feb 10 2015, after Maple *)

A243744 Number of compositions of n with exactly nine occurrences of the largest part.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48621, 92388, 168025, 294260, 498850, 822712, 1327029, 2107325, 3324750, 5280276, 8595025, 14648920, 26637015, 52076915, 108669142, 237787000, 535084341, 1219016810, 2782344676
Offset: 9

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 09 2014

Keywords

Crossrefs

Column k=9 of A238341.

Programs

  • Maple
    b:= proc(n, p, i) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
        end:
    a:= proc(n) local k; k:=9;
          add(b(n-i*k, k, i-1)/k!, i=1..n/k)
        end:
    seq(a(n), n=9..50);
  • Mathematica
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=9; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 9, 50}] (* Jean-François Alcover, Feb 10 2015, after Maple *)

A243745 Number of compositions of n with exactly ten occurrences of the largest part.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 184757, 352727, 646723, 1144484, 1963181, 3276625, 5341050, 8537815, 13454155, 21056035, 33090201, 53057236, 88592087, 157261599, 300524147, 616878471, 1339454952, 3015109174
Offset: 10

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 09 2014

Keywords

Crossrefs

Column k=10 of A238341.

Programs

  • Maple
    b:= proc(n, p, i) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
        end:
    a:= proc(n) local k; k:=10;
          add(b(n-i*k, k, i-1)/k!, i=1..n/k)
        end:
    seq(a(n), n=10..50);
  • Mathematica
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=10; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[ a[n], {n, 10, 50}] (* Jean-François Alcover, Feb 10 2015, after Maple *)

A243746 Number of compositions of n^2 with exactly n occurrences of the largest part.

Original entry on oeis.org

1, 1, 1, 21, 686, 108598, 134190162, 581266801787, 7792898359869376, 343349252968004533986, 60917528224825622999788393, 57691110936849283646013592507915, 280564704602761525363382338982479319450, 5619591974217690324311922622790661532819536973
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			a(3) = 21: 333, 111222, 112122, 112212, 112221, 121122, 121212, 121221, 122112, 122121, 122211, 211122, 211212, 211221, 212112, 212121, 212211, 221112, 221121, 221211, 222111.
		

Crossrefs

Cf. A238341.

Programs

  • Maple
    b:= proc(n, p, i) option remember; `if`(n=0, p!,
          `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))
        end:
    a:= n-> add(b(n^2-i*n, n, i-1)/n!, i=0..n):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!,
         If[i < 1, 0, Sum[b[n - i*j, p + j, i - 1]/j!, {j, 0, n/i}]]];
    a[n_] := Sum[b[n^2 - i*n, n, i - 1]/n!, {i, 0, n}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 04 2022, after Alois P. Heinz *)

Formula

a(n) = A238341(n^2,n).
Previous Showing 11-17 of 17 results.