cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A238359 Number of genus-9 rooted maps with n edges.

Original entry on oeis.org

11665426077721040625, 3498878057690404966500, 540996834819906946713375, 57494374008560749302297480, 4724172886681078698955547790, 320061005837218582787265273000, 18618409220753939214291224549409, 956146512935178711199035220384800, 44232688287025023758415781081779828, 1871678026675570344184400604255444240
Offset: 18

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=9 of A269919.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, this sequence, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 9];
    Table[a[n], {n, 18, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396

A238396 Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Examples

			Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
		

References

  • David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.

Crossrefs

Sum of row n is A000698(n+1).
See A267180 for nonorientable analog.
The triangle without the zeros is A269919.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
  • PARI
    N=20;
    MEM=matrix(N+1,N+1, r,c, -1);  \\ for memoization
    Q(n,g)=
    {
        if (n<0,  return( (g<=0) ) ); \\ not given in paper
        if (g<0,  return( 0 ) ); \\ not given in paper
        if (n<=0, return( g==0 ) );  \\ as in paper
        my( m = MEM[n+1,g+1] );
        if ( m != -1,  return(m) );  \\ memoized value
        my( t=0 );
        t += (4*n-2)/3 * Q(n-1, g);
        t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
        my(l, j);
        t += 1/2*
            sum(k=1, n-1, l=n-k;  \\ l+k == n, both >= 1
                sum(i=0, g, j=g-i;  \\ i+j == g, both >= 0
                    (2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
                );
            );
        t *= 6/(n+1);
        MEM[n+1, g+1] = t;  \\ memoize
        return(t);
    }
    for (n=0, N, for (g=0, n, print1(Q(n, g),", "); );  print(); ); /* print triangle */

Formula

From Gheorghe Coserea, Mar 11 2016: (Start)
(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.
(End)

A239924 Number of unrooted maps with n edges of (orientable) genus 10.

Original entry on oeis.org

380751174738424280720, 123800701289478148878890, 20679270860399513431761798, 2366561529248819497695971912, 208773430159079852919281433050, 15143758135416335992767275804168, 940742579115450773885994408739386
Offset: 20

Views

Author

Alain Giorgetti, Mar 29 2014

Keywords

Crossrefs

Column k=10 of A379438.
Cf. A238360 (rooted).
Previous Showing 11-13 of 13 results.