cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A258305 Number of partitions of 5*n^3 into parts that are at most n.

Original entry on oeis.org

1, 1, 21, 1587, 238383, 55567352, 17847892852, 7361757422695, 3723968532118769, 2236948326023829383, 1558198571940473783110, 1236019919143994867274825, 1100668944858994534988670451, 1087699749857592852109688615310, 1181577954513871365541825872100466
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2015

Keywords

Crossrefs

Programs

  • Maple
    T:=proc(n,k) option remember; `if`(n=0 or k=1, 1, T(n,k-1) + `if`(n
    				

Formula

a(n) ~ exp(2*n + 1/20) * 5^(n-1) * n^(n-3) / (2*Pi).

A347604 Number of partitions of n^3 into n or more parts.

Original entry on oeis.org

1, 1, 21, 2996, 1741256, 3163112106, 15285150382556, 175943559746571618, 4453575699565108152534, 233202632378520005314974035, 24061467864032622392081524591073, 4700541557913558825449308701662220085, 1681375219875327721201831964319709743701981
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Crossrefs

Formula

a(n) = [x^(n^3)] Sum_{k>=n} x^k / Product_{j=1..k} (1 - x^j).
a(n) = A128854(n) + A304176(n) - A238608(n).
Previous Showing 11-12 of 12 results.