A239339
Number of nX7 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it, modulo 4.
Original entry on oeis.org
368, 152260, 54774178, 19117551262, 6693244281896, 2331550702010844, 808844678734652790, 280328352590045292898, 97098324777969236740601, 33612953785570810824523855, 11632488891977131786485508436
Offset: 1
Some solutions for n=2
..2..1..2..0..1..0..1....0..2..0..0..2..2..2....2..0..2..0..0..0..0
..3..1..2..1..1..0..3....0..0..2..0..2..2..2....3..2..3..2..0..1..1
A255119
Number of n-length words on {0,1,2,3,4,5,6} in which 0 appears only in runs of length 2.
Original entry on oeis.org
1, 6, 37, 228, 1404, 8646, 53244, 327888, 2019204, 12434688, 76575456, 471567960, 2904015888, 17883548064, 110130696144, 678208272192, 4176550921536, 25720089706080, 158389787869632, 975398032747008, 6006708734718528, 36990591135528960
Offset: 0
-
RecurrenceTable[{a[0] == 1, a[1] == 6, a[2]== 37, a[n] == 6 a[n - 1] + 6 a[n - 3]}, a[n], {n, 0, 20}]
LinearRecurrence[{6,0,6},{1,6,37},30] (* Harvey P. Dale, Nov 06 2017 *)
-
Vec(-(x^2+1)/(6*x^3+6*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015
A239332
Number of n X n 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of the elements above it, modulo 4.
Original entry on oeis.org
2, 31, 2187, 790681, 1527488498, 15397080750829, 808844678734652790, 222534953338562308679099, 320707048341323698139814420023
Offset: 1
Some solutions for n=3
..0..2..0....2..0..1....2..2..2....2..0..0....0..2..0....0..2..0....2..1..1
..2..0..0....0..0..2....2..2..0....2..0..2....0..2..0....0..2..0....2..2..2
..2..0..2....2..0..1....0..2..2....0..2..0....0..0..2....0..0..0....0..3..1
Comments