A240015
Number of partitions of n, where the difference between the number of odd parts and the number of even parts is 6.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 33, 41, 53, 66, 84, 104, 130, 162, 198, 246, 300, 369, 445, 548, 655, 801, 956, 1160, 1378, 1666, 1970, 2368, 2796, 3340, 3933, 4679, 5494, 6505, 7626, 8987, 10511, 12346, 14404, 16856, 19631, 22893, 26606, 30939
Offset: 6
-
b:= proc(n, i, t) option remember; `if`(abs(t)>n, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
end:
a:= n-> b(n$2, -6):
seq(a(n), n=6..80);
A240016
Number of partitions of n, where the difference between the number of odd parts and the number of even parts is 7.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 54, 66, 86, 105, 133, 164, 203, 250, 308, 376, 458, 560, 675, 821, 986, 1192, 1423, 1716, 2037, 2445, 2894, 3455, 4076, 4849, 5700, 6752, 7921, 9342, 10930, 12850, 14994, 17566, 20456, 23884, 27752, 32311
Offset: 7
-
b:= proc(n, i, t) option remember; `if`(abs(t)>n, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
end:
a:= n-> b(n$2, -7):
seq(a(n), n=7..80);
A240017
Number of partitions of n, where the difference between the number of odd parts and the number of even parts is 8.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 87, 105, 135, 165, 206, 252, 313, 380, 466, 567, 688, 833, 1006, 1212, 1454, 1748, 2083, 2495, 2963, 3532, 4177, 4965, 5848, 6924, 8134, 9593, 11236, 13212, 15429, 18082, 21070, 24613, 28611, 33332
Offset: 8
-
b:= proc(n, i, t) option remember; `if`(abs(t)>n, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
end:
a:= n-> b(n$2, -8):
seq(a(n), n=8..80);
A240018
Number of partitions of n, where the difference between the number of odd parts and the number of even parts is 9.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 136, 165, 208, 253, 316, 382, 471, 571, 696, 840, 1019, 1224, 1474, 1768, 2114, 2527, 3010, 3582, 4247, 5042, 5951, 7040, 8285, 9766, 11454, 13465, 15742, 18448, 21516, 25136, 29241, 34073
Offset: 9
-
b:= proc(n, i, t) option remember; `if`(abs(t)>n, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
end:
a:= n-> b(n$2, -9):
seq(a(n), n=9..80);
A240019
Number of partitions of n, where the difference between the number of odd parts and the number of even parts is 10.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 209, 253, 318, 383, 474, 573, 701, 844, 1027, 1231, 1487, 1780, 2134, 2547, 3041, 3614, 4294, 5092, 6022, 7117, 8389, 9882, 11607, 13638, 15963, 18702, 21834, 25504, 29694, 34600
Offset: 10
a(17) = 4: [6,1,1,1,1,1,1,1,1,1,1,1], [5,2,1,1,1,1,1,1,1,1,1,1], [4,3,1,1,1,1,1,1,1,1,1,1], [3,3,2,1,1,1,1,1,1,1,1,1].
-
b:= proc(n, i, t) option remember; `if`(abs(t)>n, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
end:
a:= n-> b(n$2, -10):
seq(a(n), n=10..80);
A355321
Numbers k such that the k-th composition in standard order has the same number of even parts as odd.
Original entry on oeis.org
0, 5, 6, 17, 18, 20, 24, 43, 45, 46, 53, 54, 58, 65, 66, 68, 72, 80, 96, 139, 141, 142, 149, 150, 154, 163, 165, 166, 169, 172, 177, 178, 180, 184, 197, 198, 202, 209, 210, 212, 216, 226, 232, 257, 258, 260, 264, 272, 288, 320, 343, 347, 349, 350, 363, 365
Offset: 1
The terms together with their corresponding compositions begin:
0: ()
5: (2,1)
6: (1,2)
17: (4,1)
18: (3,2)
20: (2,3)
24: (1,4)
43: (2,2,1,1)
45: (2,1,2,1)
46: (2,1,1,2)
53: (1,2,2,1)
54: (1,2,1,2)
58: (1,1,2,2)
65: (6,1)
66: (5,2)
68: (4,3)
72: (3,4)
80: (2,5)
96: (1,6)
These compositions are counted by
A098123, without multiplicity
A242821.
For partitions without multiplicity we have
A325700, counted by
A241638.
-
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],Count[stc[#],?EvenQ]==Count[stc[#],?OddQ]&]
Comments