cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A243124 Number of compositions of n in which the maximal multiplicity of parts equals 7.

Original entry on oeis.org

1, 0, 8, 8, 44, 80, 236, 513, 1246, 2780, 6280, 13786, 30070, 64696, 134585, 285384, 594786, 1207084, 2453682, 4972098, 9946044, 19646041, 38691878, 75939596, 147425468, 283809162, 546291230, 1042095956, 1977521091, 3730060870, 7022446786, 13104269980
Offset: 7

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=7 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 7) -b(n$2, 0, 6):
    seq(a(n), n=7..50);

Formula

a(n) = A243085(n) - A243084(n) = A243081(n,7) - A243081(n,6).

A243125 Number of compositions of n in which the maximal multiplicity of parts equals 8.

Original entry on oeis.org

1, 0, 9, 9, 54, 99, 309, 684, 1720, 3918, 9081, 20343, 45261, 99063, 214719, 460428, 965980, 2040096, 4255851, 8706522, 17810088, 36275538, 73017027, 145692324, 289702678, 573412764, 1124242476, 2191850439, 4259718588, 8229423030, 15785908575, 30199934205
Offset: 8

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=8 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 8) -b(n$2, 0, 7):
    seq(a(n), n=8..50);

Formula

a(n) = A243086(n) - A243085(n) = A243081(n,8) - A243081(n,7).

A243126 Number of compositions of n in which the maximal multiplicity of parts equals 9.

Original entry on oeis.org

1, 0, 10, 10, 65, 120, 395, 890, 2320, 5401, 12857, 29435, 66955, 149455, 330042, 719882, 1554760, 3326365, 7009606, 14772370, 30835912, 63443345, 130298990, 266321547, 538824877, 1082905293, 2168501310, 4319287751, 8538816117, 16795672263, 32926171923
Offset: 9

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=9 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 9) -b(n$2, 0, 8):
    seq(a(n), n=9..50);

Formula

a(n) = A243087(n) - A243086(n) = A243081(n,9) - A243081(n,8).

A243127 Number of compositions of n in which the maximal multiplicity of parts equals 10.

Original entry on oeis.org

1, 0, 11, 11, 77, 143, 495, 1133, 3058, 7271, 17777, 41591, 96767, 220473, 496661, 1103619, 2425929, 5276623, 11370986, 24294028, 51316156, 108047687, 225688551, 466237332, 960231624, 1967794950, 3997987950, 8077762209, 16258984885, 32550495175, 64759902032
Offset: 10

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=10 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 10) -b(n$2, 0, 9):
    seq(a(n), n=10..50);

Formula

a(n) = A243088(n) - A243087(n) = A243081(n,10) - A243081(n,9).
Previous Showing 11-14 of 14 results.