A177538
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, down, down.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4941, 38736, 341496, 3354939, 36244098, 427006404, 5448087216, 74864913552, 1102353646680, 17314190063037, 288936154260522, 5105249306345502, 95216905474054011, 1869347069817467076, 38535066745735462848, 832195054189721911392
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 4, 1, 6, 7][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 5, 2, 2][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 22 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 6, 7}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 2, 2}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177539
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, down, up.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4859, 37424, 323784, 3107520, 32749200, 376929246, 4698101279, 63058148792, 906829731450, 13911580276800, 226738605155619, 3912973221007668, 71280397766349665, 1366816300552776920, 27519285653572655340, 580456044040809459821
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 4, 1, 6, 4][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 5, 2, 7][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 6, 4}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 2, 7}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177540
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up, down.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4908, 38208, 334368, 3248640, 34774112, 405758208, 5129918808, 69849531936, 1018876044528, 15854497560576, 262116761475488, 4588408779868800, 84784281517177940, 1649073291620014880, 33678805727832427224, 720569710852319474016
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 4, 1, 3, 7][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 5, 6, 2][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3, 7}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6, 2}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177541
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up, up.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4990, 39520, 352080, 3484800, 37936800, 450606300, 5797965980, 80341280840, 1192794269400, 18889568419200, 317838157969125, 5662578565559400, 106488682710940108, 2107992477960872320, 43815112964794432080, 954074378001971825930
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o=0, 1,
add(b(u-j, o+j-1, [1, 3, 4, 1, 3, 3][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 2, 5, 6, 7][t]), j=1..o)))
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 20 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3, 3}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6, 7}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177542
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, down, down, down.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4976, 39296, 349056, 3444480, 37382400, 442506240, 5674931536, 78376004800, 1159755383520, 18305304913920, 306984257241600, 5451042337781760, 102170107109747648, 2015786374006453760, 41759419845040968960, 906291283573022730240
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 5, 6, 7][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 2, 4, 2][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 6, 7}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 4, 2}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177543
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, down, up, down.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4768, 35968, 312064, 3004160, 31764480, 365798400, 4555499520, 61232590848, 882227765248, 13547017240576, 221038858829824, 3818608204709888, 69637156745773056, 1336921845773107200, 26947721453843251200, 569023211226594803712
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 5, 1, 7][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 2, 6, 2][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 24 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 1, 7}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 6, 2}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177544
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, down, up, up.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4885, 37840, 329400, 3182400, 33778800, 391590750, 4915323791, 66442003448, 962278914330, 14866633343040, 244014015391725, 4240899164064012, 77799960323395327, 1502369690026049320, 30462229695574890900, 647071778569768101485
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 5, 1, 5][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 2, 6, 7][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 30 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 1, 5}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 6, 7}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177545
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, down, down.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4929, 38544, 338904, 3309120, 35521200, 415704960, 5271197205, 71977504692, 1053008012790, 16431803844480, 272435676775200, 4782657847248000, 88624515772410633, 1728678866577622920, 35404942557640528620, 759655818204633900000
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 3, 6, 7][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 5, 2, 4][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 22 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 6, 7}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 2, 4}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177546
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, down, up.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4871, 37616, 326376, 3161321, 33647702, 391315387, 4925158550, 66783060318, 969759198692, 15025115932355, 247300462549813, 4310409307848931, 79296721491391389, 1535659536831254219, 31225145160777718876, 665165555262983848987
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 3, 6, 1][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 5, 2, 7][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 23 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 6, 1}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 2, 7}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)
A177547
Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, up, up.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 5020, 40000, 358560, 3571200, 39124800, 467612575, 6054492822, 84421683166, 1261227594360, 20098408531680, 340297488208325, 6100696794591542, 115446620042888642, 2299637587367422120, 48097983978364729800, 1053895947990450296810
Offset: 0
-
b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
add(b(u-j, o+j-1, [1, 3, 1, 3, 3, 3][t]), j=1..u)+
add(b(u+j-1, o-j, [2, 2, 4, 5, 6, 7][t]), j=1..o)))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 23 2013
-
b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 3, 3}[[t]]], {j, 1, u}] +
Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 6, 7}[[t]]], {j, 1, o}]]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)