cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A177538 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, down, down.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4941, 38736, 341496, 3354939, 36244098, 427006404, 5448087216, 74864913552, 1102353646680, 17314190063037, 288936154260522, 5105249306345502, 95216905474054011, 1869347069817467076, 38535066745735462848, 832195054189721911392
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Columns k=36,54 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 4, 1, 6, 7][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 2, 5, 2, 2][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 22 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 6, 7}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 2, 2}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.98162590771907099517875504406285427992737137228..., c = 1.1133866874983726502599853171771818959460675... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 22 2013

A177539 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, down, up.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4859, 37424, 323784, 3107520, 32749200, 376929246, 4698101279, 63058148792, 906829731450, 13911580276800, 226738605155619, 3912973221007668, 71280397766349665, 1366816300552776920, 27519285653572655340, 580456044040809459821
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Columns k=37,41 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 4, 1, 6, 4][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 2, 5, 2, 7][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 24 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 6, 4}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 2, 7}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.958757960478580745672487123002941621817..., c = 1.30438280919882137519668832091857761... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 24 2013

A177540 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up, down.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4908, 38208, 334368, 3248640, 34774112, 405758208, 5129918808, 69849531936, 1018876044528, 15854497560576, 262116761475488, 4588408779868800, 84784281517177940, 1649073291620014880, 33678805727832427224, 720569710852319474016
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Column k=38 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 4, 1, 3, 7][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 2, 5, 6, 2][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 24 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3, 7}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6, 2}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.97251576612005359341988641793523250275..., c = 1.18354011206219905745522624899424386... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 24 2013

A177541 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, down, up, up, up.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4990, 39520, 352080, 3484800, 37936800, 450606300, 5797965980, 80341280840, 1192794269400, 18889568419200, 317838157969125, 5662578565559400, 106488682710940108, 2107992477960872320, 43815112964794432080, 954074378001971825930
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Columns k=39,57 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o=0, 1,
          add(b(u-j, o+j-1, [1, 3, 4, 1, 3, 3][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 2, 5, 6, 7][t]), j=1..o)))
        end:
    a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 20 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 4, 1, 3, 3}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 2, 5, 6, 7}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.98977300089321592191180343193285102663621683..., c = 1.06422234334396404091033045795479059186356... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 20 2013

A177542 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, down, down, down.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4976, 39296, 349056, 3444480, 37382400, 442506240, 5674931536, 78376004800, 1159755383520, 18305304913920, 306984257241600, 5451042337781760, 102170107109747648, 2015786374006453760, 41759419845040968960, 906291283573022730240
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Columns k=40,58 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 1, 5, 6, 7][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 4, 2, 4, 2][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 24 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 6, 7}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 4, 2}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.9864854125625269564394281614736489845203102136102401801..., c = 1.08769348749685060865572679319744616257509477068722272... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 24 2013

A177543 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, down, up, down.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4768, 35968, 312064, 3004160, 31764480, 365798400, 4555499520, 61232590848, 882227765248, 13547017240576, 221038858829824, 3818608204709888, 69637156745773056, 1336921845773107200, 26947721453843251200, 569023211226594803712
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Column k=42 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 1, 5, 1, 7][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 4, 2, 6, 2][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 24 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 1, 7}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 6, 2}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.9598365530271216889440240044515..., c = 1.2474579024498809739499621681... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 24 2013

A177544 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, down, up, up.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4885, 37840, 329400, 3182400, 33778800, 391590750, 4915323791, 66442003448, 962278914330, 14866633343040, 244014015391725, 4240899164064012, 77799960323395327, 1502369690026049320, 30462229695574890900, 647071778569768101485
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Columns k=43,53 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 1, 5, 1, 5][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 4, 2, 6, 7][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 30 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 1, 5}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 4, 2, 6, 7}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.96553264441829855042601163560012935129948..., c = 1.245410138868090155003662557978590938375... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 30 2013

A177545 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, down, down.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4929, 38544, 338904, 3309120, 35521200, 415704960, 5271197205, 71977504692, 1053008012790, 16431803844480, 272435676775200, 4782657847248000, 88624515772410633, 1728678866577622920, 35404942557640528620, 759655818204633900000
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Columns k=44,50 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 1, 3, 6, 7][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 4, 5, 2, 4][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 22 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 6, 7}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 2, 4}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.9752820884477652193970997660966130503977714987577677..., c = 1.1721546677937404500752065441275892023818795500231... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 22 2013

A177546 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, down, up.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4871, 37616, 326376, 3161321, 33647702, 391315387, 4925158550, 66783060318, 969759198692, 15025115932355, 247300462549813, 4310409307848931, 79296721491391389, 1535659536831254219, 31225145160777718876, 665165555262983848987
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Column k=45 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 1, 3, 6, 1][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 4, 5, 2, 7][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 6, 1}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 2, 7}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.968272411334148488816007705..., c = 1.2028586385369344074836174... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 23 2013

A177547 Number of permutations of {1,...,n} avoiding adjacent step pattern up, down, up, up, up, up.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5020, 40000, 358560, 3571200, 39124800, 467612575, 6054492822, 84421683166, 1261227594360, 20098408531680, 340297488208325, 6100696794591542, 115446620042888642, 2299637587367422120, 48097983978364729800, 1053895947990450296810
Offset: 0

Views

Author

R. H. Hardin, May 10 2010

Keywords

Crossrefs

Columns k=47,61 of A242784.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t>6, 0, `if`(u+o+t<7, (u+o)!,
          add(b(u-j, o+j-1, [1, 3, 1, 3, 3, 3][t]), j=1..u)+
          add(b(u+j-1, o-j, [2, 2, 4, 5, 6, 7][t]), j=1..o)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t > 6, 0, If[u + o + t < 7, (u + o)!,
         Sum[b[u - j, o + j - 1, {1, 3, 1, 3, 3, 3}[[t]]], {j, 1, u}] +
         Sum[b[u + j - 1, o - j, {2, 2, 4, 5, 6, 7}[[t]]], {j, 1, o}]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 19 2022, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.995974410535227680608696027123957375635061175769113923461462667..., c = 1.0246396933863574062731686342310661124393526441879248790690509... . - Vaclav Kotesovec, Jan 17 2015

Extensions

a(17)-a(22) from Alois P. Heinz, Oct 23 2013
Previous Showing 41-50 of 56 results. Next