cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A246253 Number of permutations of [n] with exactly eight occurrences of the consecutive step pattern up, down, down.

Original entry on oeis.org

4736552519729393091, 925712659777722254622, 108450427756505074280046, 9790367872313042801164557, 752566904329661335915465770, 51895294413875186427307822050, 3313685917841456847408819072255, 200074814234955942882986408262750, 11591748407639299505418556743604770
Offset: 25

Views

Author

Alois P. Heinz, Aug 20 2014

Keywords

Crossrefs

Column k=8 of A242819.

Formula

a(n) ~ c * (3*sqrt(3)/(2*Pi))^n * n! * n^8, where c = 0.00000000566049683079281633... = c0 * (c0-1)^8 / (3^8 * 8!), and c0 = (1 + exp(Pi/sqrt(3))) * sqrt(3) / (2*Pi). - Vaclav Kotesovec, Aug 26 2014

A246254 Number of permutations of [n] with exactly nine occurrences of the consecutive step pattern up, down, down.

Original entry on oeis.org

14708695606607601165843, 3541988733308075285027550, 503174667865819228904767230, 54504030281627517895808563770, 4983196403246326034913729334260, 405629500925435775383214597193020, 30367312487678851547450846684842845, 2136522202012396295876641497958908090
Offset: 28

Views

Author

Alois P. Heinz, Aug 20 2014

Keywords

Crossrefs

Column k=9 of A242819.

Formula

a(n) ~ c * (3*sqrt(3)/(2*Pi))^n * n! * n^9, where c = 0.0000000002026268159682390665... = c0 * (c0-1)^9 / (3^9 * 9!), and c0 = (1 + exp(Pi/sqrt(3))) * sqrt(3) / (2*Pi). - Vaclav Kotesovec, Aug 26 2014

A246255 Number of permutations of [n] with exactly ten occurrences of the consecutive step pattern up, down, down.

Original entry on oeis.org

62671742039942099631403299, 18231157381733294406542318214, 3087040831300287487055787449994, 394974982016287093640971012693311, 42334746925643499979072751981842422, 4013581941216432516413056735995683706, 347925850343780865770905714211197525182
Offset: 31

Views

Author

Alois P. Heinz, Aug 20 2014

Keywords

Crossrefs

Column k=10 of A242819.

Formula

a(n) ~ c * (3*sqrt(3)/(2*Pi))^n * n! * n^10, where c = 0.00000000000652802483581788974... = c0 * (c0-1)^10 / (3^10 * 10!), and c0 = (1 + exp(Pi/sqrt(3))) * sqrt(3) / (2*Pi). - Vaclav Kotesovec, Aug 26 2014
Previous Showing 11-13 of 13 results.