cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A289547 Numbers k such that k!6 - 4 is prime, where k!6 is the sextuple factorial number (A085158 ).

Original entry on oeis.org

6, 7, 9, 15, 21, 27, 29, 321, 327, 333, 567, 1025, 4263, 4365, 5175, 5655, 9221, 9327, 9681, 19685, 24777, 57869, 58737
Offset: 1

Views

Author

Robert Price, Jul 07 2017

Keywords

Comments

Corresponding primes are: 2, 3, 23, 401, 8501, 229631, 623641, ...
a(24) > 10^5.
Terms > 29 correspond to probable primes.

Examples

			15!6 - 4 = 15*9*3 - 4 = 401 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[4, 50000], PrimeQ[MultiFactorial[#, 6] - 4] &]

Extensions

a(22)-a(23) from Robert Price, Aug 03 2018

A289634 Primes of the form k!3-3, where k!3 is the triple factorial number (A007661).

Original entry on oeis.org

7, 277, 877, 3637, 58237, 24344317, 17041023997, 44656330909544934316361777151999997, 3304568487306325139410771509247999997, 17994728558292550488813850298696914425610239999997, 2136063198892150618502015301628828867230815945271103455231999999997
Offset: 1

Views

Author

Robert Price, Jul 12 2017

Keywords

Crossrefs

Cf. A242994.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 3] - 3, {i, 4, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-3]-3,{n,2,200}],PrimeQ] (* Harvey P. Dale, Nov 25 2022 *)

A289685 Numbers k such that k!6 - 6 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

17, 19, 23, 31, 37, 47, 65, 151, 157, 251, 283, 371, 391, 635, 779, 799, 1517, 1799, 3355, 24619, 40375, 40793, 53135, 79427
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 929, 1723, 21499, 1339969, 49579069, 42061737019, ...
a(25) > 10^5.
Terms > 65 correspond to probable primes.

Examples

			17!6 - 6 = 17*11*5 - 6 = 929 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[6, 50000], PrimeQ[MultiFactorial[#, 6] - 6] &]

Extensions

a(23)-a(24) from Robert Price, Aug 03 2018

A289686 Numbers k such that k!6 - 8 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

9, 11, 13, 15, 19, 27, 35, 39, 45, 51, 83, 99, 105, 111, 121, 123, 127, 133, 175, 177, 213, 263, 277, 285, 339, 347, 543, 681, 743, 1069, 1965, 2379, 2613, 2629, 2911, 3767, 3879, 4789, 5493, 5819, 11559, 14555, 17831, 19705, 24867, 37535, 85089
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 19, 47, 83, 397, 1721, 229627, 21827567, ...
a(48) > 10^5.
Terms > 99 correspond to probable primes.

Examples

			19!6 - 8 = 19*13*7 - 8 = 1721 is prime, so 19 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[8, 50000], PrimeQ[MultiFactorial[#, 6] - 8] &]

Extensions

a(47) from Robert Price, Aug 03 2018

A289687 Numbers k such that k!6 - 9 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

8, 10, 16, 22, 26, 46, 52, 56, 70, 74, 286, 302, 308, 484, 698, 1100, 1226, 1528, 2486, 3796, 4256, 8524, 10688, 19424, 22226, 49346, 53746, 64178, 84304
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 7, 31, 631, 14071, 116471, 24663654391, 1282510028791, ...
a(30) > 10^5.
Terms > 46 correspond to probable primes.

Examples

			16!6 - 9 = 16*10*4 - 8 = 631 is prime, so 16 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[8, 50000], PrimeQ[MultiFactorial[#, 6] - 9] &]

Extensions

a(27)-a(29) from Robert Price, Aug 03 2018

A289688 Numbers k such that k!6 - 12 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 23, 29, 35, 37, 49, 95, 97, 101, 113, 133, 137, 361, 401, 701, 1027, 1331, 2087, 2743, 7781, 9391, 12787, 12797, 16123, 17317, 21701, 49657, 64661, 72149, 86413
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 43, 79, 21493, 623633, 21827563, 49579063, 104463111013, ...
a(32) > 10^5.
Terms > 49 correspond to probable primes.

Examples

			13!6 - 12 = 13*7*1 - 12 = 79 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[8, 50000], PrimeQ[MultiFactorial[#, 6] - 12] &]

Extensions

a(29)-a(31) from Robert Price, Aug 03 2018

A289689 Numbers k such that k!6 - 16 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

9, 15, 17, 65, 129, 135, 209, 225, 327, 357, 423, 1061, 1143, 3629, 4937, 6713, 33123, 79185, 88323, 89933
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 11, 389, 919, 8549258359016359, 17694587964658118355578965371540271859, ...
a(21) > 10^5.
Terms > 17 correspond to probable primes.

Examples

			17!6 - 16 = 17*11*5 - 16 = 919 is prime, so 17 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[6, 50000], PrimeQ[MultiFactorial[#, 6] - 16] &]

Extensions

a(18)-a(20) from Robert Price, Aug 03 2018

A289696 Numbers k such that k!6 - 18 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 23, 25, 35, 85, 89, 91, 103, 127, 161, 265, 295, 385, 605, 719, 913, 1379, 1423, 1481, 1603, 2129, 2603, 3893, 4739, 6461, 7249, 7549, 8149, 10633, 14447, 27463, 30323, 33991, 35821, 42221, 46525, 59057
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 37, 73, 21487, 43207, 21827557, 11510631741140058401857, ...
a(39) > 10^5.
Terms > 35 correspond to probable primes.

Examples

			13!6 - 18 = 13*7 - 18 = 73 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[9, 50000], PrimeQ[MultiFactorial[#, 6] - 18] &]
    Select[Range[11,60000],PrimeQ[Times@@Range[#,1,-6]-18]&] (* Harvey P. Dale, Aug 10 2019 *)

Extensions

a(38) from Robert Price, Aug 03 2018

A289697 Numbers k such that k!6 - 24 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

9, 11, 13, 17, 23, 25, 29, 31, 37, 43, 53, 65, 71, 77, 79, 115, 119, 151, 173, 559, 793, 1571, 1715, 1807, 1861, 2047, 2215, 3491, 4751, 6631, 9089, 9139, 9253, 25811, 29491, 29495, 54335, 54991, 66535, 72365
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 3, 31, 67, 911, 21481, 43201, 623621, 1339951, ...
a(41) > 10^5.
Terms > 43 correspond to probable primes.

Examples

			13!6 - 4 = 13*7*1 - 24 = 67 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[9, 50000], PrimeQ[MultiFactorial[#, 6] - 24] &]
    Select[Range[8,5000],PrimeQ[Times@@Range[#,1,-6]-24]&] (* Harvey P. Dale, Dec 01 2018 *)

Extensions

a(37)-a(40) from Robert Price, Aug 03 2018

A289698 Numbers k such that k!6 - 27 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

10, 14, 16, 34, 46, 86, 116, 130, 344, 410, 446, 746, 824, 1580, 1682, 1918, 2684, 2710, 4172, 4754, 6976, 7418, 8788, 11756, 13546, 16048, 17192, 19624, 24026, 28510, 32758, 41780, 42740, 45856, 51050
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 13, 197, 613, 13404133, 24663654373, 37455569511954513919973, ...
a(36) > 10^5.
Terms > 46 correspond to probable primes.

Examples

			14!6 - 27 = 14*8*2 - 27 = 197 is prime, so 14 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[10, 50000], PrimeQ[MultiFactorial[#, 6] - 27] &]

Extensions

a(35) from Robert Price, Aug 04 2018
Previous Showing 21-30 of 43 results. Next