cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A243088 Number of compositions of n into parts with multiplicity not larger than 10.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2047, 4083, 8166, 16266, 32466, 64580, 128522, 255119, 506025, 1001545, 1979285, 3903439, 7683348, 15091124, 29577303, 57838511, 112844632, 219646810, 426513292, 826201797, 1596503761, 3077988342, 5917798459
Offset: 0

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Comments

Number of compositions of n avoiding the pattern {1}^11.

Crossrefs

Column k=10 of A243081.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j)/j!, j=0..min(n/i, 10))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);

A243119 Number of compositions of n in which the maximal multiplicity of parts equals 2.

Original entry on oeis.org

1, 0, 4, 6, 10, 21, 40, 87, 121, 219, 421, 690, 1159, 1782, 3304, 5190, 8212, 12897, 22084, 33255, 53617, 82539, 124849, 206172, 313339, 472056, 714976, 1077996, 1682806, 2502645, 3804460, 5674305, 8340535, 12245241, 18851899, 27570366, 40385431, 59314572
Offset: 2

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Examples

			a(6) = 10: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3], [1,1,4], [1,4,1], [4,1,1].
		

Crossrefs

Column k=2 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 2) -b(n$2, 0, 1):
    seq(a(n), n=2..45);

Formula

a(n) = A232432(n) - A032020(n) = A243081(n,2) - A243081(n,1).

A243120 Number of compositions of n in which the maximal multiplicity of parts equals 3.

Original entry on oeis.org

1, 0, 4, 5, 18, 34, 59, 132, 272, 519, 966, 1746, 3487, 5986, 10570, 19701, 34444, 59250, 101155, 180588, 302788, 515205, 841042, 1449392, 2420163, 3959442, 6472636, 10656987, 17332640, 28234296, 45337971, 72306544, 117761744, 185704091, 295918788, 466574348
Offset: 3

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=3 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 3) -b(n$2, 0, 2):
    seq(a(n), n=3..50);

Formula

a(n) = A232464(n) - A232432(n) = A243081(n,3) - A243081(n,2).

A243121 Number of compositions of n in which the maximal multiplicity of parts equals 4.

Original entry on oeis.org

1, 0, 5, 5, 21, 40, 100, 210, 396, 870, 1790, 3510, 6681, 13100, 25320, 47835, 87126, 166195, 299375, 542595, 991036, 1775935, 3145270, 5487805, 9852046, 17092310, 29561070, 50696690, 88015196, 150446590, 256066280, 428469220, 727919426, 1224816005, 2043828145
Offset: 4

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=4 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 4) -b(n$2, 0, 3):
    seq(a(n), n=4..50);

Formula

a(n) = A243082(n) - A232464(n) = A243081(n,4) - A243081(n,3).

A243122 Number of compositions of n in which the maximal multiplicity of parts equals 5.

Original entry on oeis.org

1, 0, 6, 6, 27, 49, 131, 279, 635, 1370, 2722, 5877, 12170, 24113, 47660, 94470, 186623, 355400, 680074, 1296600, 2456115, 4535638, 8495447, 15570655, 28505689, 52054671, 94229227, 169184891, 301060621, 540575365, 956101463, 1682865787, 2936425870, 5167830927
Offset: 5

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=5 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 5) -b(n$2, 0, 4):
    seq(a(n), n=5..50);

Formula

a(n) = A243083(n) - A243082(n) = A243081(n,5) - A243081(n,4).

A243123 Number of compositions of n in which the maximal multiplicity of parts equals 6.

Original entry on oeis.org

1, 0, 7, 7, 35, 63, 176, 378, 889, 1946, 4298, 9282, 18999, 40565, 84371, 169372, 340683, 684957, 1359758, 2650942, 5142116, 10008642, 19123713, 36370362, 68799767, 129920385, 241668105, 450604609, 830903577, 1529103100, 2800280316, 5100363926, 9233845628
Offset: 6

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=6 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 6) -b(n$2, 0, 5):
    seq(a(n), n=6..50);

Formula

a(n) = A243084(n) - A243083(n) = A243081(n,6) - A243081(n,5).

A243124 Number of compositions of n in which the maximal multiplicity of parts equals 7.

Original entry on oeis.org

1, 0, 8, 8, 44, 80, 236, 513, 1246, 2780, 6280, 13786, 30070, 64696, 134585, 285384, 594786, 1207084, 2453682, 4972098, 9946044, 19646041, 38691878, 75939596, 147425468, 283809162, 546291230, 1042095956, 1977521091, 3730060870, 7022446786, 13104269980
Offset: 7

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=7 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 7) -b(n$2, 0, 6):
    seq(a(n), n=7..50);

Formula

a(n) = A243085(n) - A243084(n) = A243081(n,7) - A243081(n,6).

A243125 Number of compositions of n in which the maximal multiplicity of parts equals 8.

Original entry on oeis.org

1, 0, 9, 9, 54, 99, 309, 684, 1720, 3918, 9081, 20343, 45261, 99063, 214719, 460428, 965980, 2040096, 4255851, 8706522, 17810088, 36275538, 73017027, 145692324, 289702678, 573412764, 1124242476, 2191850439, 4259718588, 8229423030, 15785908575, 30199934205
Offset: 8

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=8 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 8) -b(n$2, 0, 7):
    seq(a(n), n=8..50);

Formula

a(n) = A243086(n) - A243085(n) = A243081(n,8) - A243081(n,7).

A243126 Number of compositions of n in which the maximal multiplicity of parts equals 9.

Original entry on oeis.org

1, 0, 10, 10, 65, 120, 395, 890, 2320, 5401, 12857, 29435, 66955, 149455, 330042, 719882, 1554760, 3326365, 7009606, 14772370, 30835912, 63443345, 130298990, 266321547, 538824877, 1082905293, 2168501310, 4319287751, 8538816117, 16795672263, 32926171923
Offset: 9

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=9 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 9) -b(n$2, 0, 8):
    seq(a(n), n=9..50);

Formula

a(n) = A243087(n) - A243086(n) = A243081(n,9) - A243081(n,8).

A243127 Number of compositions of n in which the maximal multiplicity of parts equals 10.

Original entry on oeis.org

1, 0, 11, 11, 77, 143, 495, 1133, 3058, 7271, 17777, 41591, 96767, 220473, 496661, 1103619, 2425929, 5276623, 11370986, 24294028, 51316156, 108047687, 225688551, 466237332, 960231624, 1967794950, 3997987950, 8077762209, 16258984885, 32550495175, 64759902032
Offset: 10

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Crossrefs

Column k=10 of A242447.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    a:= n-> b(n$2, 0, 10) -b(n$2, 0, 9):
    seq(a(n), n=10..50);

Formula

a(n) = A243088(n) - A243087(n) = A243081(n,10) - A243081(n,9).
Previous Showing 11-20 of 20 results.