cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A243345 a(1)=1; thereafter, if n is k-th squarefree number [i.e., n = A005117(k)], a(n) = 2*a(k-1); otherwise, when n is k-th nonsquarefree number [i.e., n = A013929(k)], a(n) = 2*a(k)+1.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 7, 10, 18, 24, 17, 64, 13, 14, 33, 20, 36, 48, 11, 19, 34, 25, 65, 128, 26, 28, 15, 66, 40, 72, 21, 96, 22, 38, 37, 68, 50, 130, 49, 35, 256, 52, 129, 27, 29, 56, 67, 30, 41, 132, 73, 80, 144, 42, 97, 192, 44, 23, 39, 76, 74, 136, 69, 100
Offset: 1

Views

Author

Antti Karttunen, Jun 03 2014

Keywords

Comments

Any other fixed points than 1, 2, 6, 9, 135, 147, 914, ... ?
Any other points than 4, 21, 39, 839, 4893, 12884, ... where a(n) = n-1 ?

Crossrefs

Formula

a(1) = 1, and for n>1, if mu(n) = 0, a(n) = 1 + 2*a(A057627(n)), otherwise a(n) = 2*a(A013928(n)), where mu is Moebius mu function (A008683).
For all n > 1, A000035(a(n)+1) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) + 1 modulo 2.

A245701 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = 2*a(n), a(A091242(n)) = 2*a(n)+1, where A014580(n) = binary code for n-th irreducible polynomial over GF(2), A091242(n) = binary code for n-th reducible polynomial over GF(2).

Original entry on oeis.org

1, 2, 4, 3, 5, 9, 8, 7, 11, 19, 6, 17, 10, 15, 23, 39, 13, 35, 18, 21, 31, 47, 79, 27, 16, 71, 37, 43, 63, 95, 14, 159, 55, 33, 143, 75, 22, 87, 127, 191, 38, 29, 319, 111, 67, 287, 12, 151, 45, 175, 255, 383, 77, 59, 34, 639, 223, 135, 20, 575, 30, 25, 303, 91, 351, 511, 46, 767, 155, 119, 69, 1279, 78, 447, 271, 41, 1151, 61, 51
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Crossrefs

Inverse: A245702.
Similar entanglement permutations: A135141, A193231, A237427, A243287, A245703, A245704.

Programs

Formula

a(1) = 1, and for n > 1, if n is in A014580, a(n) = 2*a(A091226(n)), otherwise a(n) = 1 + 2*a(A091245(n)).
As a composition of related permutations:
a(n) = A135141(A245704(n)).
Other identities:
For all n >= 1, 1 - A000035(a(n)) = A091225(n). [Maps binary representations of irreducible GF(2) polynomials (= A014580) to even numbers and the corresponding representations of reducible polynomials to odd numbers].

A245613 Permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = A244991(a(k)), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = A244990(1+a(k)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 9, 7, 11, 10, 32, 18, 13, 12, 17, 15, 22, 20, 35, 19, 66, 14, 24, 21, 34, 25, 23, 33, 31, 45, 63, 37, 27, 26, 41, 36, 29, 43, 69, 40, 134, 30, 47, 39, 44, 68, 71, 50, 38, 46, 67, 131, 28, 49, 42, 70, 64, 52, 92, 48, 127, 65, 61, 75, 55, 51, 89, 83, 73, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Comments

This shares with the permutation A122111 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.

Crossrefs

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, a(n) = A244991(a(A055038(n))), otherwise a(n) = A244990(1+a(A055037(n)-1)).
As a composition of related permutations:
a(n) = A244322(A245603(n)).
For all n >= 1, A066829(n) = A244992(a(n)).

A252757 Permutation of natural numbers: a(1)=1, and for n>1, if n is k-th number whose largest prime factor is less than the square of its smallest prime factor [i.e., n = A251726(k)], a(n) = 2*a(k), otherwise, when n = A251727(k), a(n) = 1 + 2*a(k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 3, 512, 6, 1024, 5, 12, 2048, 10, 24, 4096, 9, 20, 17, 48, 8192, 18, 33, 40, 65, 34, 129, 96, 16384, 257, 513, 36, 66, 80, 7, 1025, 13, 130, 2049, 68, 11, 258, 25, 192, 32768, 514, 4097, 21, 49, 1026, 72, 132, 8193, 19, 41, 160, 35, 14, 97, 2050, 26, 260, 16385, 4098, 37, 67, 81, 136, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Crossrefs

Inverse: A252758.
Similar permutations: A243287, A135141, A237427.

Formula

a(1)=1, and for n>1: if A252372(n) = 1 [i.e. the largest prime factor of n is less than the square of its smallest prime factor], a(n) = 2*a(A252373(k)), otherwise, a(n) = 1 + 2*a(n-A252373(n)-1).
Previous Showing 11-14 of 14 results.