A374266 Smallest number reachable by a Fibonacci-like iteration where one has the option to either omit or keep zero digits.
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 61, 438, 499, 937, 1436, 2373, 389, 2762, 1657, 1368, 325, 1693, 218, 1911, 2129, 44, 1516, 129, 394, 37, 53, 9, 62, 35, 133, 24, 121, 181, 95, 69, 11, 53, 19, 9, 19, 19, 2, 12, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4
Offset: 1
A371916 Zeroless analog of tetranacci numbers.
1, 1, 1, 1, 4, 7, 13, 25, 49, 94, 181, 349, 673, 1297, 25, 2344, 4339, 85, 6793, 13561, 24778, 45217, 9349, 9295, 88639, 1525, 1888, 11347, 13399, 28159, 54793, 17698, 11449, 11299, 95239, 135685, 253672, 495895, 98491, 983743, 183181, 176131, 1441546, 278461, 279319, 2175457
Offset: 0
Comments
It is not known whether this sequence cycles, but it is conjectured to cycle just like A243063 and A371911 (have periods of 912 and 300056874, respectively) because the expected growth factor in the number of digits of successive terms is 0.9.
It's been computationally verified that if the sequence does cycle, then s+p > 10^10, where s and p are the starting index and period of the cycle, respectively.
Examples
a(14) = Zr(a(13)+a(12)+a(11)+a(10)) = Zr(1297+673+349+181) = Zr(2500) = 25.
Programs
-
Mathematica
a[0]=a[1]=a[2]=a[3]=1; a[n_]:=FromDigits[DeleteCases[IntegerDigits[a[n-1]+a[n-2]+a[n-3]+a[n-4]], 0]]; Array[a, 46, 0] (* Stefano Spezia, Apr 12 2024 *)
-
Python
def a(n): a, b, c, d = 1, 1, 1, 1 for _ in range(n): a, b, c, d = b, c, d, int(str(a+b+c+d).replace('0', '')) return a
-
Python
# faster for initial segment of sequence from itertools import islice def agen(): # generator of terms a, b, c, d = 1, 1, 1, 1 while True: yield a a, b, c, d = b, c, d, int(str(a+b+c+d).replace("0", "")) print(list(islice(agen(), 45))) # Michael S. Branicky, Apr 13 2024
Formula
a(n) = Zr(a(n-1)+a(n-2)+a(n-3)+a(n-4)), where the function Zr(k) removes zero digits from k.
Comments
Examples
Links
Crossrefs
Programs
Python
Formula