cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A244516 Number of partitions of n where the minimal multiplicity of any part is 3.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 2, 3, 3, 2, 7, 3, 5, 9, 8, 7, 16, 12, 17, 23, 23, 25, 42, 33, 43, 59, 61, 59, 95, 85, 104, 128, 137, 148, 207, 189, 233, 283, 307, 320, 430, 424, 498, 584, 634, 686, 872, 864, 1011, 1177, 1280, 1365, 1687, 1736, 1987, 2258, 2470, 2674, 3208, 3303, 3767, 4277, 4658, 5014, 5916, 6201
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Comments

Column k=3 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 3) -b(n$2, 4):
    seq(a(n), n=1..80);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 3] - b[n, n, 4];
    Array[a, 80] (* Jean-François Alcover, May 01 2018, translated from Maple *)

A244517 Number of partitions of n where the minimal multiplicity of any part is 4.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 2, 1, 4, 2, 3, 3, 6, 3, 6, 4, 10, 6, 10, 7, 19, 13, 17, 16, 31, 22, 34, 28, 48, 39, 54, 49, 76, 62, 84, 79, 120, 96, 133, 124, 179, 162, 202, 193, 275, 249, 315, 300, 412, 379, 480, 467, 603, 577, 711, 696, 905, 850, 1035, 1038, 1307, 1258, 1509, 1511, 1864, 1834, 2185, 2171, 2673, 2636
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Comments

Column k=4 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 4) -b(n$2, 5):
    seq(a(n), n=1..100);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 4] - b[n, n, 5];
    Array[a, 100] (* Jean-François Alcover, May 01 2018, translated from Maple *)

A244518 Number of partitions of n where the minimal multiplicity of any part is 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 2, 1, 2, 3, 3, 2, 4, 2, 6, 4, 5, 4, 7, 7, 8, 8, 10, 11, 18, 13, 19, 19, 22, 29, 32, 29, 37, 37, 53, 48, 60, 54, 68, 79, 84, 86, 104, 99, 133, 125, 149, 151, 183, 191, 219, 223, 259, 268, 335, 320, 377, 391, 448, 487, 547, 552, 640, 666, 781, 795, 908, 923, 1057, 1139, 1246, 1312, 1472, 1508, 1754
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 29 2014

Keywords

Comments

Column k=5 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 5) -b(n$2, 6):
    seq(a(n), n=1..100);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 5] - b[n, n, 6];
    Array[a, 100] (* Jean-François Alcover, May 01 2018, translated from Maple *)

A245037 Number of partitions of n where the minimal multiplicity of any part is 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 4, 2, 3, 3, 3, 2, 7, 3, 5, 5, 6, 3, 11, 5, 10, 9, 12, 10, 21, 13, 20, 19, 26, 21, 38, 26, 38, 37, 45, 39, 66, 50, 64, 63, 77, 67, 104, 83, 110, 102, 124, 112, 166, 138, 176, 174, 204, 189, 264, 230, 288
Offset: 6

Views

Author

Joerg Arndt and Alois P. Heinz, Jul 10 2014

Keywords

Crossrefs

Column k=6 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 6) -b(n$2, 7):
    seq(a(n), n=6..100);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 6] - b[n, n, 7];
    Table[a[n], {n, 6, 100}] (* Jean-François Alcover, May 01 2018, translated from Maple *)

A245038 Number of partitions of n where the minimal multiplicity of any part is 7.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 3, 3, 2, 4, 2, 3, 3, 6, 3, 6, 4, 6, 4, 6, 7, 9, 8, 9, 11, 14, 11, 19, 17, 20, 21, 25, 24, 31, 32, 36, 37, 44, 40, 52, 52, 65, 58, 70, 69, 83, 78, 93, 99, 111, 104, 126, 124, 142, 141, 177, 167, 201
Offset: 7

Views

Author

Joerg Arndt and Alois P. Heinz, Jul 10 2014

Keywords

Crossrefs

Column k=7 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 7) -b(n$2, 8):
    seq(a(n), n=7..100);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 7] - b[n, n, 8];
    Table[a[n], {n, 7, 100}] (* Jean-François Alcover, May 01 2018, translated from Maple *)

A245039 Number of partitions of n where the minimal multiplicity of any part is 8.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 4, 2, 3, 3, 3, 2, 4, 2, 6, 4, 5, 4, 7, 3, 6, 4, 10, 6, 10, 7, 14, 11, 13, 12, 23, 15, 23, 20, 28, 24, 32, 26, 43, 34, 43, 39, 56, 45, 59, 55, 73, 63, 80, 70, 94, 81, 101, 92, 127, 104, 131
Offset: 8

Views

Author

Joerg Arndt and Alois P. Heinz, Jul 10 2014

Keywords

Crossrefs

Column k=8 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 8) -b(n$2, 9):
    seq(a(n), n=8..100);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 8] - b[n, n, 9];
    Table[a[n], {n, 8, 100}] (* Jean-François Alcover, May 01 2018, translated from Maple *)

A245040 Number of partitions of n where the minimal multiplicity of any part is 9.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 2, 4, 2, 3, 3, 3, 2, 7, 3, 5, 5, 6, 3, 7, 3, 6, 9, 7, 7, 12, 10, 12, 13, 14, 14, 22, 18, 22, 24, 26, 25, 35, 28, 34, 40, 42, 41, 52, 46, 55, 59, 64, 58, 81, 70, 82, 85, 92
Offset: 9

Views

Author

Joerg Arndt and Alois P. Heinz, Jul 10 2014

Keywords

Crossrefs

Column k=9 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 9) -b(n$2, 10):
    seq(a(n), n=9..100);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 9] - b[n, n, 10];
    Table[a[n], {n, 9, 100}] (* Jean-François Alcover, May 01 2018, translated from Maple *)

A245041 Number of partitions of n where the minimal multiplicity of any part is 10.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 2, 3, 3, 3, 2, 4, 2, 3, 3, 6, 3, 6, 4, 6, 4, 6, 3, 7, 4, 9, 6, 11, 7, 13, 11, 14, 12, 17, 13, 25, 18, 24, 22, 30, 26, 35, 28, 37, 33, 49, 37, 53, 45, 56, 54, 67, 58
Offset: 10

Views

Author

Joerg Arndt and Alois P. Heinz, Jul 10 2014

Keywords

Crossrefs

Column k=10 of A243978.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    a:= n-> b(n$2, 10) -b(n$2, 11):
    seq(a(n), n=10..100);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
    a[n_] := b[n, n, 10] - b[n, n, 11];
    Table[a[n], {n, 10, 100}] (* Jean-François Alcover, May 01 2018, translated from Maple *)
Previous Showing 11-18 of 18 results.