A244127
Triangle read by rows: terms T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k).
Original entry on oeis.org
0, 0, 1, 0, 0, 3, 0, 0, -9, 16, 0, 0, 18, -128, 125, 0, 0, -30, 640, -1875, 1296, 0, 0, 45, -2560, 16875, -31104, 16807, 0, 0, -63, 8960, -118125, 435456, -588245, 262144, 0, 0, 84, -28672, 708750, -4644864, 11764900, -12582912, 4782969
Offset: 0
First rows of the triangle, all summing up to 2^n-1:
0,
0, 1,
0, 0, 3,
0, 0, -9, 16,
0, 0, 18, -128, 125,
0, 0, -30, 640, -1875, 1296,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244128,
A244129,
A244130,
A244131,
A244132,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n, k); ); );
return(v); }
a=seq(100,-1)
A244128
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k)*binomial(n,k).
Original entry on oeis.org
0, 1, 0, 1, -2, 0, 1, -4, 9, 0, 1, -8, 27, -64, 0, 1, -16, 81, -256, 625, 0, 1, -32, 243, -1024, 3125, -7776, 0, 1, -64, 729, -4096, 15625, -46656, 117649, 0, 1, -128, 2187, -16384, 78125, -279936, 823543, -2097152, 0, 1, -256, 6561, -65536, 390625, -1679616, 5764801, -16777216, 43046721
Offset: 1
The first rows of the triangle (starting at n=1):
0, 1,
0, 1, -2,
0, 1, -4, 9,
0, 1, -8, 27, -64,
0, 1, -16, 81, -256, 625,
0, 1, -32, 243, -1024, 3125, -7776,
Cf.
A076014,
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244129,
A244130,
A244131,
A244132,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax,b)={my(v,n,k,irow);
v = vector((nmax+1)*(nmax+2)/2-1);
for(n=1,nmax,irow=n*(n+1)/2;v[irow]=0;
for(k=1,n,v[irow+k]=(-1)^(k-1)*(k*b)^(n-1);););
return(v);}
a=seq(100,1);
A244129
Triangle read by rows: terms of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k).
Original entry on oeis.org
0, 1, 0, 2, -2, 0, 3, -12, 9, 0, 4, -48, 108, -64, 0, 5, -160, 810, -1280, 625, 0, 6, -480, 4860, -15360, 18750, -7776, 0, 7, -1344, 25515, -143360, 328125, -326592, 117649, 0, 8, -3584, 122472, -1146880, 4375000, -7838208, 6588344, -2097152
Offset: 1
First rows of the triangle, starting at row n=1. All rows sum up to 0, except the first one whose sum is 1:
0, 1;
0, 2, -2;
0, 3, -12, 9;
0, 4, -48, 108, -64;
0, 5, -160, 810, -1280, 625;
0, 6, -480, 4860, -15360, 18750, -7776;
0, 7, -1344, 25515, -143360, 328125, -326592, 117649;
0, 8, -3584, 122472, -1146880, 4375000, -7838208, 6588344, -2097152; ...
From _Paul D. Hanna_, Sep 13 2017: (Start)
E.g.f.: A(x,y) = y*x + (-2*y^2 + 2*y)*x^2/2! + (9*y^3 - 12*y^2 + 3*y)*x^3/3! + (-64*y^4 + 108*y^3 - 48*y^2 + 4*y)*x^4/4! + (625*y^5 - 1280*y^4 + 810*y^3 - 160*y^2 + 5*y)*x^5/5! + (-7776*y^6 + 18750*y^5 - 15360*y^4 + 4860*y^3 - 480*y^2 + 6*y)*x^6/6! + (117649*y^7 - 326592*y^6 + 328125*y^5 - 143360*y^4 + 25515*y^3 - 1344*y^2 + 7*y)*x^7/7! +...
such that A(x,y) * exp( A(x,y) ) = y*x*exp(x). (End)
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244130,
A244131,
A244132,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2-1);
for(n=1, nmax, irow=n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-1)^(k-1)*(k*b)^(n-1)*binomial(n,k); ); );
return(v); }
a=seq(100, 1);
A244130
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n as Sum_{k=0..n} T(n,k)*binomial(n,k).
Original entry on oeis.org
0, 0, 1, 0, 2, -2, 0, 4, -6, 9, 0, 8, -18, 36, -64, 0, 16, -54, 144, -320, 625, 0, 32, -162, 576, -1600, 3750, -7776, 0, 64, -486, 2304, -8000, 22500, -54432, 117649, 0, 128, -1458, 9216, -40000, 135000, -381024, 941192, -2097152, 0, 256, -4374, 36864, -200000, 810000, -2667168, 7529536, -18874368, 43046721
Offset: 0
The first rows of the triangle are:
0,
0, 1,
0, 2, -2,
0, 4, -6, 9,
0, 8, -18, 36, -64,
0, 16, -54, 144, -320, 625,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244131,
A244132,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax,b)={my(v,n,k,irow);
v = vector((nmax+1)*(nmax+2)/2);v[1]=0;
for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
for(k=1,n,v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k);););
return(v);}
a=seq(100,1);
A244131
Triangle read by rows: terms T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k).
Original entry on oeis.org
0, 0, 1, 0, 4, -2, 0, 12, -18, 9, 0, 32, -108, 144, -64, 0, 80, -540, 1440, -1600, 625, 0, 192, -2430, 11520, -24000, 22500, -7776, 0, 448, -10206, 80640, -280000, 472500, -381024, 117649, 0, 1024, -40824, 516096, -2800000, 7560000, -10668672, 7529536, -2097152
Offset: 0
First rows of the triangle, all summing up to n:
0,
0, 1,
0, 4, -2,
0, 12, -18, 9,
0, 32, -108, 144, -64,
0, 80, -540, 1440, -1600, 625,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244132,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n,k); ); );
return(v); }
a=seq(100,1);
A244132
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k)*binomial(n,k).
Original entry on oeis.org
0, 0, 1, 0, 0, 2, 0, 0, -2, 9, 0, 0, 2, -18, 64, 0, 0, -2, 36, -192, 625, 0, 0, 2, -72, 576, -2500, 7776, 0, 0, -2, 144, -1728, 10000, -38880, 117649, 0, 0, 2, -288, 5184, -40000, 194400, -705894, 2097152, 0, 0, -2, 576, -15552, 160000, -972000, 4235364, -14680064, 43046721
Offset: 0
The first rows of the triangle are:
0,
0, 1,
0, 0, 2,
0, 0, -2, 9,
0, 0, 2, -18, 64,
0, 0, -2, 36, -192, 625,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244133,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k); ); );
return(v); }
a=seq(100,-1);
A244133
Triangle read by rows: terms T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k).
Original entry on oeis.org
0, 0, 1, 0, 0, 2, 0, 0, -6, 9, 0, 0, 12, -72, 64, 0, 0, -20, 360, -960, 625, 0, 0, 30, -1440, 8640, -15000, 7776, 0, 0, -42, 5040, -60480, 210000, -272160, 117649, 0, 0, 56, -16128, 362880, -2240000, 5443200, -5647152, 2097152, 0, 0, -72, 48384, -1959552, 20160000, -81648000, 152473104, -132120576, 43046721
Offset: 0
First rows of the triangle, all summing up to n:
0,
0, 1,
0, 0, 2,
0, 0, -6, 9,
0, 0, 12, -72, 64,
0, 0, -20, 360, -960, 625,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244132,
A244134,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n, k); ); );
return(v); }
a=seq(100,-1);
A244134
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).
Original entry on oeis.org
1, 0, 1, 0, 3, -2, 0, 16, -10, 9, 0, 125, -72, 63, -64, 0, 1296, -686, 576, -576, 625, 0, 16807, -8192, 6561, -6400, 6875, -7776, 0, 262144, -118098, 90000, -85184, 90000, -101088, 117649, 0, 4782969, -2000000, 1449459, -1327104, 1373125, -1524096, 1764735, -2097152
Offset: 0
The first rows of the triangle are:
1,
0, 1,
0, 3, -2,
0, 16, -10, 9,
0, 125, -72, 63, -64,
0, 1296, -686, 576, -576, 625,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244132,
A244133,
A244135,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax,b)={my(v,n,k,irow);
v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
for(k=1,n,v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k);););
return(v);}
a=seq(100,1);
A244135
Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
Original entry on oeis.org
1, 0, 1, 0, 6, -2, 0, 48, -30, 9, 0, 500, -432, 252, -64, 0, 6480, -6860, 5760, -2880, 625, 0, 100842, -122880, 131220, -96000, 41250, -7776, 0, 1835008, -2480058, 3150000, -2981440, 1890000, -707616, 117649, 0, 38263752, -56000000, 81169704, -92897280, 76895000, -42674688, 14117880, -2097152
Offset: 0
First rows of the triangle, all summing up to n^n:
1,
0, 1,
0, 6, -2,
0, 48, -30, 9,
0, 500, -432, 252, -64,
0, 6480, -6860, 5760, -2880, 625,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244132,
A244133,
A244134,
A244136,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n,k); ); );
return(v); }
a=seq(100, 1);
A244136
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 4, 2, 9, 0, 27, 8, 9, 64, 0, 256, 54, 36, 64, 625, 0, 3125, 512, 243, 256, 625, 7776, 0, 46656, 6250, 2304, 1728, 2500, 7776, 117649, 0, 823543, 93312, 28125, 16384, 16875, 31104, 117649, 2097152, 0, 16777216, 1647086, 419904, 200000, 160000, 209952, 470596, 2097152, 43046721
Offset: 0
The first rows of the triangle are:
1,
0, 1,
0, 1, 2,
0, 4, 2, 9,
0, 27, 8, 9, 64,
0, 256, 54, 36, 64, 625,
Cf.
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244132,
A244133,
A244134,
A244135,
A244137,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k); ); );
return(v); }
a=seq(100,-1);
Comments