cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A244126 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

0, 0, 1, 0, 0, 3, 0, 0, -3, 16, 0, 0, 3, -32, 125, 0, 0, -3, 64, -375, 1296, 0, 0, 3, -128, 1125, -5184, 16807, 0, 0, -3, 256, -3375, 20736, -84035, 262144, 0, 0, 3, -512, 10125, -82944, 420175, -1572864, 4782969, 0, 0, -3, 1024, -30375, 331776, -2100875, 9437184, -33480783, 100000000, 0, 0, 3, -2048, 91125, -1327104, 10504375, -56623104, 234365481, -800000000, 2357947691, 0, 0, -3, 4096, -273375, 5308416, -52521875
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k)=(1+k)^(k-1)*(1-k)^(n-k) for k>0, while T(n,0)=0 by convention.

Examples

			The first rows of the triangle are:
0,
0, 1,
0, 0, 3,
0, 0, -3, 16,
0, 0, 3, -32, 125,
0, 0, -3, 64, -375, 1296,
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
      v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
      for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
        for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k); ); );
      return(v); }
      a=seq(100,-1)

A244127 Triangle read by rows: terms T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k).

Original entry on oeis.org

0, 0, 1, 0, 0, 3, 0, 0, -9, 16, 0, 0, 18, -128, 125, 0, 0, -30, 640, -1875, 1296, 0, 0, 45, -2560, 16875, -31104, 16807, 0, 0, -63, 8960, -118125, 435456, -588245, 262144, 0, 0, 84, -28672, 708750, -4644864, 11764900, -12582912, 4782969
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k)=(1+k)^(k-1)*(1-k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0 by convention.

Examples

			First rows of the triangle, all summing up to 2^n-1:
0,
0, 1,
0, 0, 3,
0, 0, -9, 16,
0, 0, 18, -128, 125,
0, 0, -30, 640, -1875, 1296,
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
      v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
      for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n, k); ); );
      return(v); }
      a=seq(100,-1)

A244128 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

0, 1, 0, 1, -2, 0, 1, -4, 9, 0, 1, -8, 27, -64, 0, 1, -16, 81, -256, 625, 0, 1, -32, 243, -1024, 3125, -7776, 0, 1, -64, 729, -4096, 15625, -46656, 117649, 0, 1, -128, 2187, -16384, 78125, -279936, 823543, -2097152, 0, 1, -256, 6561, -65536, 390625, -1679616, 5764801, -16777216, 43046721
Offset: 1

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(-k)^(k-1)*k^(n-k) for k>0, while T(n,0)=0 by convention. The flattened triangle start with row 1, coefficient T(1,0).
Resembles A076014, but with added powers of 0, and with sign-alternating columns.

Examples

			The first rows of the triangle (starting at n=1):
0, 1,
0, 1, -2,
0, 1, -4, 9,
0, 1, -8, 27, -64,
0, 1, -16, 81, -256, 625,
0, 1, -32, 243, -1024, 3125, -7776,
		

Crossrefs

Programs

  • PARI
    seq(nmax,b)={my(v,n,k,irow);
    v = vector((nmax+1)*(nmax+2)/2-1);
    for(n=1,nmax,irow=n*(n+1)/2;v[irow]=0;
      for(k=1,n,v[irow+k]=(-1)^(k-1)*(k*b)^(n-1);););
    return(v);}
    a=seq(100,1);

A244129 Triangle read by rows: terms of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k).

Original entry on oeis.org

0, 1, 0, 2, -2, 0, 3, -12, 9, 0, 4, -48, 108, -64, 0, 5, -160, 810, -1280, 625, 0, 6, -480, 4860, -15360, 18750, -7776, 0, 7, -1344, 25515, -143360, 328125, -326592, 117649, 0, 8, -3584, 122472, -1146880, 4375000, -7838208, 6588344, -2097152
Offset: 1

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k) = (-k)^(k-1) * k^(n-k) * binomial(n,k) for k>0, while T(n,0)=0 by convention.

Examples

			First rows of the triangle, starting at row n=1. All rows sum up to 0, except the first one whose sum is 1:
0, 1;
0, 2, -2;
0, 3, -12, 9;
0, 4, -48, 108, -64;
0, 5, -160, 810, -1280, 625;
0, 6, -480, 4860, -15360, 18750, -7776;
0, 7, -1344, 25515, -143360, 328125, -326592, 117649;
0, 8, -3584, 122472, -1146880, 4375000, -7838208, 6588344, -2097152; ...
From _Paul D. Hanna_, Sep 13 2017: (Start)
E.g.f.: A(x,y) = y*x + (-2*y^2 + 2*y)*x^2/2! + (9*y^3 - 12*y^2 + 3*y)*x^3/3! + (-64*y^4 + 108*y^3 - 48*y^2 + 4*y)*x^4/4! + (625*y^5 - 1280*y^4 + 810*y^3 - 160*y^2 + 5*y)*x^5/5! + (-7776*y^6 + 18750*y^5 - 15360*y^4 + 4860*y^3 - 480*y^2 + 6*y)*x^6/6! + (117649*y^7 - 326592*y^6 + 328125*y^5 -  143360*y^4 + 25515*y^3 - 1344*y^2 + 7*y)*x^7/7! +...
such that A(x,y) * exp( A(x,y) ) = y*x*exp(x). (End)
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2-1);
    for(n=1, nmax, irow=n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k]=(-1)^(k-1)*(k*b)^(n-1)*binomial(n,k); ); );
    return(v); }
    a=seq(100, 1);

Formula

E.g.f. A(x,y) satisfies: A(x,y) * exp( A(x,y) ) = y*x*exp(x). - Paul D. Hanna, Sep 13 2017

A244130 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n as Sum_{k=0..n} T(n,k)*binomial(n,k).

Original entry on oeis.org

0, 0, 1, 0, 2, -2, 0, 4, -6, 9, 0, 8, -18, 36, -64, 0, 16, -54, 144, -320, 625, 0, 32, -162, 576, -1600, 3750, -7776, 0, 64, -486, 2304, -8000, 22500, -54432, 117649, 0, 128, -1458, 9216, -40000, 135000, -381024, 941192, -2097152, 0, 256, -4374, 36864, -200000, 810000, -2667168, 7529536, -18874368, 43046721
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k) = (-k)^(k-1)*(1+k)^(n-k) for k>0, while T(n,0)=0 by convention.

Examples

			The first rows of the triangle are:
0,
0, 1,
0, 2, -2,
0, 4, -6, 9,
0, 8, -18, 36, -64,
0, 16, -54, 144, -320, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax,b)={my(v,n,k,irow);
    v = vector((nmax+1)*(nmax+2)/2);v[1]=0;
    for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
      for(k=1,n,v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k);););
    return(v);}
    a=seq(100,1);

A244131 Triangle read by rows: terms T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k).

Original entry on oeis.org

0, 0, 1, 0, 4, -2, 0, 12, -18, 9, 0, 32, -108, 144, -64, 0, 80, -540, 1440, -1600, 625, 0, 192, -2430, 11520, -24000, 22500, -7776, 0, 448, -10206, 80640, -280000, 472500, -381024, 117649, 0, 1024, -40824, 516096, -2800000, 7560000, -10668672, 7529536, -2097152
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(-k)^(k-1)*(1+k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0 by convention.

Examples

			First rows of the triangle, all summing up to n:
0,
0, 1,
0, 4, -2,
0, 12, -18, 9,
0, 32, -108, 144, -64,
0, 80, -540, 1440, -1600, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
    for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n,k); ); );
    return(v); }
    a=seq(100,1);

A244132 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, -2, 9, 0, 0, 2, -18, 64, 0, 0, -2, 36, -192, 625, 0, 0, 2, -72, 576, -2500, 7776, 0, 0, -2, 144, -1728, 10000, -38880, 117649, 0, 0, 2, -288, 5184, -40000, 194400, -705894, 2097152, 0, 0, -2, 576, -15552, 160000, -972000, 4235364, -14680064, 43046721
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(k)^(k-1)*(1-k)^(n-k) for k>0, while T(n,0)=0 by convention.

Examples

			The first rows of the triangle are:
0,
0, 1,
0, 0, 2,
0, 0, -2, 9,
0, 0, 2, -18, 64,
0, 0, -2, 36, -192, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
    for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k); ); );
    return(v); }
    a=seq(100,-1);

A244133 Triangle read by rows: terms T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k).

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, -6, 9, 0, 0, 12, -72, 64, 0, 0, -20, 360, -960, 625, 0, 0, 30, -1440, 8640, -15000, 7776, 0, 0, -42, 5040, -60480, 210000, -272160, 117649, 0, 0, 56, -16128, 362880, -2240000, 5443200, -5647152, 2097152, 0, 0, -72, 48384, -1959552, 20160000, -81648000, 152473104, -132120576, 43046721
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(k)^(k-1)*(1-k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0 by convention.

Examples

			First rows of the triangle, all summing up to n:
0,
0, 1,
0, 0, 2,
0, 0, -6, 9,
0, 0, 12, -72, 64,
0, 0, -20, 360, -960, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
    for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n, k); ); );
    return(v); }
    a=seq(100,-1);

A244134 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

1, 0, 1, 0, 3, -2, 0, 16, -10, 9, 0, 125, -72, 63, -64, 0, 1296, -686, 576, -576, 625, 0, 16807, -8192, 6561, -6400, 6875, -7776, 0, 262144, -118098, 90000, -85184, 90000, -101088, 117649, 0, 4782969, -2000000, 1449459, -1327104, 1373125, -1524096, 1764735, -2097152
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(-k)^(k-1)*(n+k)^(n-k) for k>0, while T(n,0)=0^n by convention.

Examples

			The first rows of the triangle are:
1,
0, 1,
0, 3, -2,
0, 16, -10, 9,
0, 125, -72, 63, -64,
0, 1296, -686, 576, -576, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax,b)={my(v,n,k,irow);
    v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
    for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
      for(k=1,n,v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k);););
    return(v);}
    a=seq(100,1);

A244135 Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).

Original entry on oeis.org

1, 0, 1, 0, 6, -2, 0, 48, -30, 9, 0, 500, -432, 252, -64, 0, 6480, -6860, 5760, -2880, 625, 0, 100842, -122880, 131220, -96000, 41250, -7776, 0, 1835008, -2480058, 3150000, -2981440, 1890000, -707616, 117649, 0, 38263752, -56000000, 81169704, -92897280, 76895000, -42674688, 14117880, -2097152
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(-k)^(k-1)*(n+k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.

Examples

			First rows of the triangle, all summing up to n^n:
1,
0, 1,
0, 6, -2,
0, 48, -30, 9,
0, 500, -432, 252, -64,
0, 6480, -6860, 5760, -2880, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
    for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n,k); ); );
    return(v); }
    a=seq(100, 1);
Previous Showing 11-20 of 27 results. Next