cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A260562 Numbers n such that (n^43+1)/(n+1) is prime.

Original entry on oeis.org

2, 3, 6, 22, 59, 83, 91, 95, 120, 148, 195, 196, 201, 247, 252, 264, 315, 360, 378, 458, 555, 680, 792, 893, 1025, 1088, 1158, 1171, 1240, 1280, 1416, 1437, 1632, 1661, 1677, 1681, 1849, 1946, 1960, 2007, 2090, 2092, 2225, 2242, 2244, 2377, 2483, 2547, 2596, 2641
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^43 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^43 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^43+1)/(n+1)), print1(n,", ")))
    

A260563 Numbers n such that (n^47+1)/(n+1) is prime.

Original entry on oeis.org

6, 7, 17, 90, 126, 139, 143, 257, 293, 295, 319, 387, 482, 519, 603, 720, 819, 884, 896, 903, 905, 921, 952, 954, 956, 1042, 1058, 1147, 1170, 1237, 1253, 1279, 1295, 1343, 1366, 1370, 1406, 1465, 1514, 1593, 1595, 1607, 1609, 1622, 1701, 1705, 1709, 1736, 1772
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^47 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^47 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^47+1)/(n+1)), print1(n,", ")))
    

A260564 Numbers n such that (n^53+1)/(n+1) is prime.

Original entry on oeis.org

10, 14, 40, 57, 111, 119, 406, 447, 475, 620, 646, 839, 848, 866, 909, 997, 1086, 1095, 1180, 1318, 1319, 1332, 1418, 1447, 1472, 1534, 1617, 1681, 1684, 1735, 1788, 1955, 2037, 2118, 2120, 2163, 2169, 2170, 2390, 2407, 2440, 2498, 2700, 2709, 2716, 2761, 2999
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^53 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^53 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^53+1)/(n+1)), print1(n,", ")))
    

A260565 Numbers n such that (n^59+1)/(n+1) is prime.

Original entry on oeis.org

6, 9, 25, 46, 89, 92, 109, 133, 136, 140, 167, 173, 213, 239, 255, 277, 337, 350, 359, 553, 554, 586, 594, 599, 639, 692, 710, 815, 860, 864, 1015, 1030, 1050, 1094, 1106, 1110, 1112, 1195, 1199, 1211, 1216, 1260, 1347, 1363, 1370, 1459, 1476, 1477, 1507, 1541
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^59 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^59 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^59+1)/(n+1)), print1(n,", ")))
    

A260566 Numbers n such that (n^61+1)/(n+1) is prime.

Original entry on oeis.org

2, 7, 70, 178, 208, 251, 274, 276, 290, 326, 328, 350, 413, 452, 552, 558, 594, 595, 605, 607, 626, 787, 791, 801, 905, 971, 1019, 1091, 1117, 1140, 1198, 1241, 1274, 1357, 1428, 1462, 1604, 1647, 1654, 1705, 1717, 1908, 1987, 2061, 2109, 2161, 2309, 2372, 2450
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^61 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^61 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^61+1)/(n+1)), print1(n,", ")))
    

A260567 Numbers n such that (n^67+1)/(n+1) is prime.

Original entry on oeis.org

5, 10, 23, 33, 40, 54, 193, 326, 330, 364, 375, 382, 388, 404, 438, 449, 562, 625, 626, 683, 700, 765, 797, 807, 1001, 1017, 1136, 1181, 1216, 1242, 1249, 1254, 1286, 1386, 1412, 1482, 1581, 1656, 1748, 1832, 1873, 1921, 2017, 2038, 2061, 2166, 2193, 2204, 2253
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^67 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^67 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^67+1)/(n+1)), print1(n,", ")))
    

A260568 Numbers n such that (n^71+1)/(n+1) is prime.

Original entry on oeis.org

46, 94, 99, 189, 226, 236, 244, 372, 387, 390, 409, 410, 424, 442, 478, 540, 574, 608, 611, 644, 653, 695, 707, 846, 868, 1036, 1248, 1336, 1374, 1395, 1418, 1424, 1549, 1665, 1737, 1856, 1866, 1880, 1917, 1937, 2105, 2114, 2126, 2141, 2166, 2202, 2217, 2274
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^71 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^71 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^71+1)/(n+1)), print1(n,", ")))
    

A260569 Numbers n such that (n^73+1)/(n+1) is prime.

Original entry on oeis.org

18, 214, 280, 394, 422, 444, 447, 571, 745, 787, 796, 886, 954, 960, 987, 1012, 1055, 1140, 1194, 1212, 1224, 1227, 1349, 1583, 1598, 1640, 1686, 1714, 1723, 1750, 1931, 1962, 2032, 2036, 2110, 2223, 2339, 2774, 2827, 2859, 2957, 3063, 3192, 3236, 3285, 3485
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^73 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^73 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^73+1)/(n+1)), print1(n,", ")))
    

A260570 Numbers n such that (n^79+1)/(n+1) is prime.

Original entry on oeis.org

2, 20, 22, 35, 47, 72, 109, 133, 184, 211, 226, 259, 352, 470, 559, 720, 785, 800, 823, 842, 895, 1003, 1145, 1172, 1213, 1291, 1318, 1375, 1441, 1453, 1460, 1461, 1467, 1477, 1604, 1608, 1637, 1654, 1695, 1703, 1807, 1831, 1834, 1903, 1948, 2035, 2060, 2065
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jul 29 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime((n^79 + 1) div (n + 1))]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[(#^79 + 1)/(# + 1)] &]
  • PARI
    for(n=1,10000, if(isprime((n^79+1)/(n+1)), print1(n,", ")))
    

A258356 Numbers n such that cyclotomic polynomial value Phi(10,n!) is prime.

Original entry on oeis.org

2, 36, 101, 107, 267, 316
Offset: 1

Views

Author

Robert Price, May 27 2015

Keywords

Comments

All values except 2 are probable primes.
a(7) > 7560.
That is, numbers n such that n! belongs to A246392. - Michel Marcus, May 30 2015

Examples

			2 is in the sequence because Phi(10,2!) = 1 - 2 + 2^2 - 2^3 + 2^4 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 7560], PrimeQ[Cyclotomic[10, #!]] &]
Previous Showing 31-40 of 40 results.