cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A372941 Numbers k that divide the k-th Domb number.

Original entry on oeis.org

1, 2, 4, 14, 28, 112, 133, 176, 224, 368, 388, 448, 616, 704, 784, 896, 1216, 1568, 1792, 3563, 4256, 5144, 6272, 8624, 8924, 9856, 11264, 11776, 13927, 16702, 23408, 32936, 38509, 42238, 43456, 43652, 43904, 46424, 67328, 73784, 76912, 78848, 81466, 110614, 118256
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A002895(k).

Examples

			2 is a term since A002895(2) = 28 = 2 * 14 is divisible by 2.
4 is a term since A002895(4) = 2716 = 4 * 679 is divisible by 4.
		

Crossrefs

Cf. A002895.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{d0 = 1, d1 = 4, d2, s = {1}}, Do[d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; If[Divisible[d2, k], AppendTo[s, k]]; d0 = d1; d1 = d2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(d0 = 1, d1 = 4, d2); print1("1, "); for(k = 2, kmax, d2 = ((20*k^3 - 30*k^2 + 18*k - 4)*d1 - 64*(k-1)^3*d0)/k^3; if(!(d2 % k), print1(k, ", ")); d0 = d1; d1 = d2);}

A372943 Numbers k that divide the k-th Apéry number (A005258).

Original entry on oeis.org

1, 3, 21, 147, 217, 781, 903, 1323, 3249, 3267, 3591, 5929, 6897, 7623, 8001, 8673, 10017, 11187, 11997, 17181, 21413, 21791, 23529, 38829, 51183, 54033, 58653, 68229, 71391, 75593, 83853, 87813, 97641, 128331, 171647, 217143, 227829, 249159, 302841, 307347, 389403
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A005258(k).

Examples

			3 is a term since A005258(3) = 147 = 3 * 49 is divisible by 3.
		

Crossrefs

Cf. A005258.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{ap0 = 1, ap1 = 3, ap2, s = {1}}, Do[ap2 = ((11*k^2 - 11*k + 3)*ap1 + (k-1)^2*ap0)/k^2; If[Divisible[ap2, k], AppendTo[s, k]]; ap0 = ap1; ap1 = ap2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(ap0 = 1, ap1 = 3, ap2); print1("1, "); for(k = 2, kmax, ap2 = ((11*k^2 - 11*k + 3)*ap1 + (k-1)^2*ap0)/k^2; if(!(ap2 % k), print1(k, ", ")); ap0 = ap1; ap1 = ap2);}

A373054 Numbers k that divide the k-th tetranacci number (A000078).

Original entry on oeis.org

1, 2, 22, 32, 80, 137, 179, 272, 320, 352, 600, 653, 859, 936, 991, 1279, 1280, 1306, 1601, 1609, 1632, 1672, 1982, 2089, 2152, 2437, 2560, 2591, 2693, 2789, 2897, 3120, 3202, 3701, 3823, 3847, 4110, 4212, 4451, 4691, 4751, 4919, 5120, 5182, 5280, 5386, 5431, 5479
Offset: 1

Views

Author

Amiram Eldar, May 20 2024

Keywords

Comments

Numbers k such that k | A000078(k).

Examples

			22 is a term since A000078(22) = 147312 = 22 * 6696 is divisible by 22.
		

Crossrefs

Cf. A000078.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    With[{m = 10000}, Position[LinearRecurrence[{1, 1, 1, 1}, {0, 0, 1, 1}, m]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    lista(kmax) = {my(t0 = 0, t1 = 0, t2 = 0, t3 = 1, t4 = 0); print1(1, ", ",  2, ", "); for(k = 4, kmax, t4 = t0 + t1 + t2 + t3; if(!(t4%k), print1(k, ", ")); t0 = t1; t1 = t2; t2 = t3; t3 = t4);}

A372942 Numbers k that divide the k-th Apéry number (A005259).

Original entry on oeis.org

1, 5, 55, 629, 3439, 8525, 17629, 74455, 120275, 176305, 244915, 250325, 628975, 817819, 839135, 910675, 912865, 936955, 1118435, 1147925, 2344127, 4434125, 7795715, 7888477, 9276275, 10205525
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A005259(k).

Crossrefs

Cf. A005259.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{ap0 = 1, ap1 = 5, ap2, s = {1}}, Do[ap2 = ((34*k^3 - 51*k^2 + 27*k - 5)*ap1 - (k-1)^3*ap0)/k^3; If[Divisible[ap2, k], AppendTo[s, k]]; ap0 = ap1; ap1 = ap2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(ap0 = 1, ap1 = 5, ap2); print1("1, "); for(k = 2, kmax, ap2 = ((34*k^3 - 51*k^2 + 27*k - 5)*ap1 - (k-1)^3*ap0)/k^3; if(!(ap2 % k), print1(k, ", ")); ap0 = ap1; ap1 = ap2);}

Formula

5 is a term since A005259(5) = 819005 = 5 * 163801 is divisible by 5.

A372944 Numbers k that divide the k-th tangent (or "zag") number.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 68, 128, 256, 512, 592, 1024, 1156, 2048, 2056, 4096, 4112, 8192, 8224, 8576, 10928, 16384, 16448, 19652, 20512, 28936, 32768, 37888, 41024, 43882, 64804, 65536, 82048
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A000182(k).
All the powers of 2 are terms.

Examples

			2 is a term since A000182(2) = 2 is divisible by 2.
4 is a term since A000182(4) = 272 = 4 * 68 is divisible by 4.
		

Crossrefs

Cf. A000182.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    Select[Range[1000], Divisible[((-4)^# - (-16)^#) * BernoulliB[2*#]/(2*#), #] &]
  • PARI
    is(n) = (((-4)^n - (-16)^n) * bernfrac(2*n) / (2*n)) % n == 0;

A372945 Numbers k that divide the k-th Wedderburn-Etherington number.

Original entry on oeis.org

1, 6, 36, 49, 61, 223, 4258, 9747
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A001190(k).
a(9) > 90000, if it exists.

Examples

			6 is a term since A001190(6) = 6 is divisible by 6.
36 is a term since A001190(36) = 249959727972 = 36 * 6943325777 is divisible by 36.
		

Crossrefs

Cf. A001190.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    v[0] = 0; v[1] = 1; v[n_] := v[n] = Sum[v[k] * v[n-k], {k, 1, Floor[(n-1)/2]}] + If[EvenQ[n], v[n/2]*(v[n/2]+1)/2, 0]; Select[Range[10^4], Divisible[v[#], #] &]
  • PARI
    lista(kmax) = {my(v = vector(kmax, i, 1)); print1(1, ", "); for(k = 4, kmax, v[k] = sum(i = 1, (k-1)\2, v[i] * v[k-i]) + if(!(k % 2), v[k/2] * (v[k/2] + 1)/2); if(!(v[k] % k), print1(k, ", ")));}

A372946 Numbers k that divide the k-th NSW number.

Original entry on oeis.org

1, 7, 217, 3937, 6727, 6847, 51943, 170671, 330337, 385687, 2484247, 2566537, 2904007, 3020857, 3696967, 6465577, 9405337, 12021439, 19384207
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A002315(k).

Examples

			7 is a term since A002315(7) = 275807 = 7 * 39401 is divisible by 7.
		

Crossrefs

Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{nsw0 = 1, nsw1 = 7, nsw2, s = {1}}, Do[nsw2 = 6*nsw1 - nsw0; If[Divisible[nsw2, k], AppendTo[s, k]]; nsw0 = nsw1; nsw1 = nsw2, {k, 2, kmax}]; s]; seq[52000]
  • PARI
    lista(kmax) = {my(nsw0 = 1, nsw1 = 7, nsw2); print1("1, "); for(k = 2, kmax, nsw2 = 6*nsw1 - nsw0; if(!(nsw2 % k), print1(k, ", ")); nsw0 = nsw1; nsw1 = nsw2);}

A373055 Numbers k that divide the k-th term of the tribonacci sequence A000213.

Original entry on oeis.org

1, 3, 217, 13343, 549333, 1387663, 9356863, 22119541
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

Numbers k such that k | A000213(k).

Examples

			3 is a term since A000213(3) = 3 is divisible by 3.
		

Crossrefs

Cf. A000213.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci A000073), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    With[{m = 15000}, Position[LinearRecurrence[{1, 1, 1}, {1, 1, 3}, m]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    lista(kmax) = {my(t0 = 1, t1 = 1, t2 = 1, t3); print1("1, "); for(k = 3, kmax, t3 = t0 + t1 + t2; if(!(t3 % k), print1(k, ", ")); t0 = t1; t1 = t2; t2 = t3);}

A373056 Numbers k that divide the k-th Ulam number.

Original entry on oeis.org

1, 2, 3, 4, 16, 52, 204, 255, 4259, 4262, 4265, 4855
Offset: 1

Views

Author

Amiram Eldar, May 21 2024

Keywords

Comments

Numbers k such that k | A002858(k).
a(13) >= 10^8, if it exists.
Based on empirical data its seems that the Ulam numbers have a positive asymptotic density and that A002858(k) ~ 13.5... * k (see A307331 and A346216). If this is true, then this sequence is finite, and it is likely that there are no more terms.

Examples

			16 is a term since A002858(16) = 48 = 3 * 16 is divisible by 16.
		

Crossrefs

Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

Previous Showing 11-19 of 19 results.