A248677 Decimal expansion of r = sum_{n >= 0} floor(n/4)!/n!.
2, 7, 1, 8, 3, 0, 9, 6, 9, 7, 7, 0, 7, 2, 4, 5, 6, 1, 8, 3, 3, 0, 4, 0, 8, 2, 7, 6, 3, 6, 1, 8, 7, 3, 4, 7, 9, 6, 2, 8, 7, 6, 1, 1, 1, 3, 3, 9, 4, 8, 9, 6, 3, 4, 3, 2, 0, 6, 4, 4, 2, 4, 2, 6, 1, 7, 4, 1, 3, 1, 3, 5, 4, 3, 9, 1, 2, 8, 2, 4, 3, 8, 1, 9, 6, 1
Offset: 1
Examples
r = 2.718309697707245618330408276361873...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Maple
evalf(sum(floor(n/4)!/n!, n=0..infinity),120); # Vaclav Kotesovec, Oct 17 2014
-
Mathematica
x = N[Sum[Floor[n/2]!/n!, {n, 0, 200}], 120] RealDigits[x][[1]] (* A248675 *) x = N[Sum[Floor[n/3]!/n!, {n, 0, 200}], 120] RealDigits[x][[1]] (* A248676 *) x = N[Sum[Floor[n/4]!/n!, {n, 0, 200}], 120] RealDigits[x][[1]] (* A248677 *)
Formula
r = sum_{n >= 0} p(4,n)*n!/(4*n + 3)!, where p(k,n) is defined at A248664.