cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A343323 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^(k^3).

Original entry on oeis.org

1, 8, 27, 92, 125, 432, 343, 1080, 1080, 2000, 1331, 5940, 2197, 5488, 6750, 12070, 4913, 20304, 6859, 27500, 18522, 21296, 12167, 76680, 23375, 35152, 42291, 75460, 24389, 135000, 29791, 132408, 71874, 78608, 85750, 309204, 50653, 109744, 118638, 355000, 68921, 370440, 79507, 292820
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 11 2021

Keywords

Crossrefs

A304459 Coefficient of x^n in Product_{k>=1} (1+x^k)^(n^3).

Original entry on oeis.org

1, 1, 36, 3681, 770576, 276218900, 151479085752, 117975860569973, 123825991870849088, 168480096257782525419, 288418999876101261408100, 606652152400218992684850772, 1537897976017806908644807294656, 4624364862288125600795358272563097
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2018

Keywords

Comments

In general, for m>=3, coefficient of x^n in Product_{k>=1} (1+x^k)^(n^m) is asymptotic to n^(m*n)/n!.

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+x^k)^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(n^3), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ exp(n) * n^(2*n - 1/2) / sqrt(2*Pi).

A281157 Expansion of Product_{k>=1} (1 + x^k)^(k*(2*k^2+1)/3).

Original entry on oeis.org

1, 1, 6, 25, 78, 258, 800, 2463, 7344, 21511, 61677, 173980, 483319, 1323470, 3577605, 9553658, 25227727, 65918419, 170552866, 437196640, 1110945961, 2799689792, 7000246591, 17372882671, 42809388080, 104774554942, 254771953179, 615667051237, 1478934870484, 3532347875968
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Weigh transform of octahedral numbers (A005900).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (2 k^2 + 1)/3), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*(2*k^2+1)/3).
a(n) ~ exp(-Zeta(3)^2 / (600*Zeta(5)) + (Zeta(3) / (4*(15*Zeta(5))^(2/5))) * n^(2/5) + (5*(15*Zeta(5))^(1/5) / 4) * n^(4/5)) * (3*Zeta(5))^(1/10) / (sqrt(Pi) * 2^(47/90) * 5^(2/5) * n^(3/5)). - Vaclav Kotesovec, Nov 09 2017
Previous Showing 21-23 of 23 results.