cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A328283 The maximum number m such that m white, m black and m red queens can coexist on an n X n chessboard without attacking each other.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14
Offset: 1

Views

Author

Dmitry Kamenetsky, Oct 11 2019

Keywords

Comments

This is the peaceable queens problem (A250000) for 3 players.
For n >= 11, it seems that a(n) is simply 2n - 14. However this turns out to be false as a(18) >= 23.
In the limit of large n, Arthur O'Dwyer (see links) showed that the optimal value is lower bounded by 0.0718*n^2. All currently known best solutions follow this formula (when rounded down). - M. A. Achterberg, Dec 01 2022

Examples

			a(8) = 4, because 4 queens of each color can co-exist without attacking queens of another color. Note that in this case both red (6) and white (5) have more than 4 queens.
+ - - - - - - - - +
| R . R . R . . . |
| R . . . . . . . |
| . . . . . W . W |
| R . R . . . . . |
| . . . . . W . W |
| . B . B . . . . |
| . . . . . . . W |
| . B . B . . . . |
+ - - - - - - - - +
		

Crossrefs

Cf. A250000.

A306954 Triangle read by rows: T(n, k), for 1 <= k <= n, is the maximum integer q such that k non-attacking armies of q queens can be placed on an n X n chessboard.

Original entry on oeis.org

1, 4, 0, 9, 1, 0, 16, 2, 1, 1, 25, 4, 1, 1, 1, 36, 5, 2, 1, 1, 1, 49, 7
Offset: 1

Views

Author

Benoit Jubin, Mar 17 2019

Keywords

Comments

One has T(n, k) = 0 exactly when (n, k) = (2, 2) or (3, 3).
One has T(n, n) = 1 except when n = 2 or 3 (that is, when A000170(n) = 0).
For a fixed k, the sequence T(-, k) is nondecreasing.
For a fixed n, the sequence T(n, -) is nonincreasing.
For a fixed nonzero p, the sequence (T(k + p, k))_k is nonincreasing. Indeed, given a configuration with k+1 armies on a k+p+1 chessboard, remove the row and column containing a given queen; this row and column can contain only queens of one army, so this yields a configuration of k armies on a k+p chessboard.
One has T(n, 1) = n^2 and T(n, 2) = A250000(n).
For a fixed k, one has, asymptotically in n, that 1/2.(n/k)^2 <= T(n, k) <= (n/k)^2, which can be proved as follows.
For the upper bound, let R(n, k) be defined as T(n, k) with rooks instead of queens. Then, T(n, k) <= R(n, k) ~ (n/k)^2. Indeed, for 1 <= i <= k, say the i^th army controls a_i rows and b_i columns. The sum of the a_i's, as well as the sum of the b_i's, is at most n. The size of the i^th army is at most a_i b_i. Therefore, one wants to maximize min(a_i b_i, i = 1..k). Ignoring rounding, the maximum is reached when all the a_i's and b_i's are equal.
For the lower bound, consider the n X n chessboard as a k X k grid with cells of size (n/k) X (n/k). Consider a configuration of k non-attacking queens on the k X k chessboard as in A000170(k). Place each of the k armies inside one cell occupied in that configuration. The precise placement is as follows: the army occupies the square whose vertices are the midpoints of the sides of the cell, hence has size 1/2.(n/k)^2. These armies are non-attacking.

Examples

			Triangle begins:
   1
   4  0
   9  1  0
  16  2  1  1
  25  4  1  1  1
  36  5  2  1  1  1
  49  7  .  .  1  1  1
  64  9  .  .  .  1  1  1
  81 12  .  .  .  .  1  1  1
		

Crossrefs

Column 1 gives A000290, n >= 1.
Cf. A000170 (non-attacking queens).
Column 2 gives A250000 (case of two armies).
Previous Showing 11-12 of 12 results.