cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A269867 Self-inverse permutation of natural numbers: a(1) = 1, for even n, a(n) = A250469(1+a(n/2)), for odd n, a(n) = 2*a(A268674(n)-1).

Original entry on oeis.org

1, 3, 2, 9, 6, 5, 18, 27, 4, 11, 10, 15, 22, 23, 12, 81, 30, 7, 162, 33, 36, 13, 14, 45, 54, 29, 8, 69, 26, 17, 138, 243, 20, 37, 46, 21, 34, 167, 44, 99, 42, 41, 198, 39, 24, 35, 82, 135, 90, 91, 60, 87, 70, 25, 66, 207, 324, 65, 174, 51, 130, 149, 72, 729, 58, 55, 102, 111, 28, 53, 110, 63, 106, 77, 108, 501, 74, 115, 126, 297, 16, 47
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2016

Keywords

Crossrefs

Similar permutations: A269865, A269866, A270197.

Formula

a(1) = 1, a(2n) = A250469(1+a(n)), a(2n+1) = 2*a(A268674(2n+1)-1).

A266404 Self-inverse permutation of natural numbers: a(n) = A250470(A030101(A250469(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 11, 8, 17, 10, 7, 12, 13, 20, 25, 16, 9, 18, 23, 14, 53, 22, 19, 28, 15, 36, 27, 24, 29, 40, 37, 32, 33, 34, 83, 26, 31, 42, 51, 30, 47, 38, 59, 44, 101, 76, 41, 60, 73, 68, 39, 52, 21, 84, 107, 56, 131, 72, 43, 48, 89, 80, 125, 64, 65, 66, 109, 50, 99, 82, 71, 58, 49, 74, 151, 46, 239, 78, 97, 62, 173, 70, 35, 54
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2016

Keywords

Crossrefs

Cf. A265329, A266402 (other conjugates or similar derivations of A057889).
Cf. also A266403.

Programs

Formula

Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A269355 Permutation of natural numbers: a(n) = A269380(A250469(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 23, 10, 11, 12, 13, 14, 15, 16, 9, 18, 17, 20, 31, 22, 25, 24, 21, 26, 27, 28, 19, 30, 29, 32, 49, 34, 71, 36, 37, 38, 39, 40, 41, 42, 43, 44, 107, 46, 47, 48, 119, 50, 51, 52, 35, 54, 89, 56, 101, 58, 53, 60, 61, 62, 63, 64, 115, 66, 67, 68, 173, 70, 55, 72, 33, 74, 75, 76, 131, 78, 77, 80, 167
Offset: 1

Views

Author

Antti Karttunen, Mar 03 2016

Keywords

Examples

			For n=9 we first find what number is below 9 in square array A083221, which is 25, then we find what number is above 25 in square array A255127, which is 23, thus a(9) = 23.
		

Crossrefs

Inverse: A269356.
Cf. also arrays A083221 & A255127.
More recursed variant: A269357. Cf. also permutations A266645, A255407, A269171.

Programs

Formula

a(n) = A269380(A250469(n)).
Other identities. For all n >= 1:
a(2n) = 2n. [Fixes the even numbers.]

A269357 Permutation of natural numbers: a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A269380(A250469(2n+1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 23, 10, 11, 12, 13, 14, 15, 16, 9, 46, 17, 20, 31, 22, 25, 24, 21, 26, 27, 28, 19, 30, 29, 32, 49, 18, 71, 92, 37, 34, 39, 40, 41, 62, 43, 44, 107, 50, 47, 48, 119, 42, 51, 52, 35, 54, 89, 56, 101, 38, 53, 60, 61, 58, 63, 64, 115, 98, 67, 36, 173, 142, 55, 184, 33, 74, 75, 68, 131, 78, 77, 80, 167
Offset: 1

Views

Author

Antti Karttunen, Mar 03 2016

Keywords

Comments

This is a variant of A269355, from which it differs for the first time at n=18.

Crossrefs

Formula

a(1) = 1, after which, for even n, a(n) = 2*a(n/2) and for odd n, a(n) = A269355(n) = A269380(A250469(n)).
Other identities. For all n >= 1:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A269863 Permutation of natural numbers: a(1) = 1, a(A269360(n)) = 2*a(n), a(A250469(1+n)) = 1 + 2*a(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 7, 8, 13, 18, 17, 26, 11, 12, 37, 34, 25, 74, 19, 20, 69, 50, 21, 14, 15, 16, 41, 138, 33, 82, 27, 36, 53, 22, 277, 66, 35, 52, 45, 554, 105, 90, 23, 24, 1109, 210, 101, 42, 75, 68, 49, 2218, 149, 38, 51, 148, 137, 98, 297, 274, 39, 40, 29, 30, 197, 594, 139, 100, 61, 394, 201, 122, 43, 28, 73, 106, 789, 402, 31, 32
Offset: 1

Views

Author

Antti Karttunen, Mar 13 2016

Keywords

Crossrefs

Inverse: A269864.
Differs from similarly constructed A245605 for the first time at n=21, where a(21)=19, instead of 15.

Formula

a(1) = 1, after which for even n, a(n) = 2*a(A268674(n-1)), for odd n, a(n) = 1 + 2*a(A268674(n)-1).

A269864 Permutation of natural numbers: a(1) = 1, a(2n) = A269360(a(n)), a(2n+1) = A250469(1+a(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 7, 8, 15, 16, 11, 26, 27, 28, 13, 12, 21, 22, 25, 36, 45, 46, 19, 14, 33, 76, 65, 66, 81, 82, 31, 18, 39, 34, 17, 56, 63, 64, 29, 50, 75, 106, 41, 116, 135, 136, 53, 24, 57, 40, 35, 86, 99, 226, 143, 120, 195, 196, 71, 206, 243, 244, 89, 38, 93, 52, 23, 96, 117, 100, 77, 20, 51, 166, 145, 156, 189, 190, 119, 32, 87
Offset: 1

Views

Author

Antti Karttunen, Mar 13 2016

Keywords

Comments

This sequence can be represented as a binary tree. When the parent contains n, the left hand child contains A269360(n) [= 1+A250469(n)] and the right hand child contains A250469(1+n):
1
|
................../ \..................
2 3
4......../ \........5 6......../ \........9
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
10 7 8 15 16 11 26 27
28 13 12 21 22 25 36 45 46 19 14 33 76 65 66 81
etc.

Crossrefs

Inverse: A269863.
Cf. also A269865, A269866, A269867.
Differs from similarly constructed A245606 for the first time at n=15, where a(15)=27 instead of 21.

Formula

a(1) = 1, a(2n) = 1 + A250469(a(n)), a(2n+1) = A250469(1+a(n)).

A280702 a(n) = gcd(A003961(n), A250469(n)).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 3, 25, 3, 13, 3, 17, 3, 35, 9, 19, 3, 23, 3, 55, 3, 29, 3, 49, 3, 5, 9, 31, 3, 37, 3, 5, 3, 77, 15, 41, 3, 5, 9, 43, 3, 47, 3, 5, 3, 53, 3, 121, 147, 5, 153, 59, 3, 91, 33, 5, 3, 61, 3, 67, 3, 5, 27, 119, 195, 71, 3, 5, 3, 73, 3, 79, 3, 5, 9, 143, 3, 83, 3, 5, 3, 89, 3, 133, 3, 5, 9, 97, 3, 187, 3, 5, 3, 161
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Comments

For n > 1, a(n) > 1 because A020639(A003961(n)) = A020639(A250469(n)) = A003961(A020639(n)).

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[ GCD[ Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1], f@ First@ #2] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017 *)
  • Scheme
    (define (A280702 n) (gcd (A003961 n) (A250469 n)))

Formula

a(n) = gcd(A003961(n), A250469(n)).

A346479 Dirichlet inverse of A250469.

Original entry on oeis.org

1, -3, -5, 0, -7, 15, -11, 6, 0, 15, -13, 12, -17, 27, 35, 0, -19, 24, -23, 42, 55, 15, -29, -66, 0, 27, 60, 54, -31, -27, -37, -12, 45, 15, 77, -144, -41, 27, 75, -102, -43, -63, -47, 132, 60, 39, -53, -24, 0, 84, 65, 144, -59, -384, 91, -162, 85, 15, -61, -558, -67, 39, 120, 0, 119, 165, -71, 222, 115, 9, -73, 168
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2021

Keywords

Comments

Not all zeros occur on squares. For example, a(1445) = a(5 * 17^2) = 0.

Crossrefs

Cf. also A346234, A346477.

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA250469(n)));
    A346479(n) = v346479[n];

Formula

a(1) = 1; and for n > 2, a(n) = -Sum_{d|n, dA250469(n/d).
a(n) = A346480(n) - A250469(n).

A269360 Permutation of even numbers: a(n) = 1 + A250469(n).

Original entry on oeis.org

2, 4, 6, 10, 8, 16, 12, 22, 26, 28, 14, 34, 18, 40, 36, 46, 20, 52, 24, 58, 56, 64, 30, 70, 50, 76, 66, 82, 32, 88, 38, 94, 86, 100, 78, 106, 42, 112, 96, 118, 44, 124, 48, 130, 116, 136, 54, 142, 122, 148, 126, 154, 60, 160, 92, 166, 146, 172, 62, 178, 68, 184, 156, 190, 120, 196, 72, 202, 176, 208, 74, 214, 80, 220, 186, 226, 144
Offset: 1

Views

Author

Antti Karttunen, Mar 13 2016

Keywords

Crossrefs

Programs

  • Mathematica
    (* b = A250469 *) b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[1, 1]]; For[ k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[ FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]];
    a[n_] := b[n] + 1;
    Array[a, 100] (* Jean-François Alcover, Mar 14 2016 *)
  • Scheme
    (define (A269360 n) (+ 1 (A250469 n)))

Formula

a(n) = 1 + A250469(n).
a(n) = 2 + A253886(n-1).

A280693 Numbers n such that A003961(n) = A250469(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 50, 52, 53, 55, 59, 61, 65, 66, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 186, 187, 191, 193, 197, 199, 203
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Comments

Positions of zeros in A280692. Conjectured to be also the positions of ones in A280703.
For most terms k of this sequence A003961(k) is also included as a term. Exceptions are: 50, 52, 66, 186, 435, 1245, 1445, 2068, 2085, 11605, ... that seems to be a subsequence of all those terms that have more than two prime factors: 50, 52, 66, 186, 435, 1245, 1445, 2068, 2085, 8695, 11605, ...
Note how 8695 = 5*37*47 and A003961(8695) = 7*41*53 = 15211 = A003961(8695) = A250469(8695) (for no apparent reason?).

Crossrefs

Fixed points of permutations A266645 & A266646.
Cf. A000040, A001248, A006094, A251728 (subsequences).
Cf. also arrays A083221 and A246278.

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; With[{nn = 204}, Function[s, Function[t, Select[Range@ nn, f@ # == t[[#]] &]]@ MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ nn]]@ PositionIndex@ Array[g, 10^4]] (* Michael De Vlieger, Mar 08 2017, Version 10 *)
Previous Showing 11-20 of 56 results. Next