cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A280703 a(n) = A003961(n) / A280702(n) = A003961(n) / gcd(A003961(n),A250469(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 7, 1, 15, 1, 11, 1, 9, 1, 25, 1, 21, 1, 13, 1, 45, 1, 17, 25, 11, 1, 35, 1, 81, 13, 19, 1, 15, 1, 23, 17, 21, 1, 55, 1, 39, 35, 29, 1, 135, 1, 1, 19, 1, 1, 125, 1, 9, 23, 31, 1, 105, 1, 37, 55, 27, 1, 1, 1, 57, 29, 77, 1, 225, 1, 41, 49, 23, 1, 85, 1, 189, 125, 43, 1, 165, 1, 47, 31, 39, 1, 175, 1, 87, 37
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Comments

If there are no such n that A250469(n) = k*A003961(n) for some integer k > 1, then A280693 gives the positions of ones in this sequence. Cf. also comment in A280704.

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[ Function[p, p/GCD[Lookup[s, g@ First@ #2 + 1][[#1]] - Boole[First@ #2 == 1], p]]@ f@ First@ #2 &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017, Version 10 *)
  • Scheme
    (define (A280703 n) (/ (A003961 n) (A280702 n)))

Formula

a(n) = A003961(n) / A280702(n) = A003961(n) / gcd(A003961(n),A250469(n)).

A280704 a(n) = A250469(n) / A280702(n) = A250469(n) / gcd(A003961(n),A250469(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 7, 1, 9, 1, 11, 1, 13, 1, 5, 1, 17, 1, 19, 1, 21, 1, 23, 1, 25, 13, 9, 1, 29, 1, 31, 17, 33, 1, 7, 1, 37, 19, 13, 1, 41, 1, 43, 23, 45, 1, 47, 1, 1, 25, 1, 1, 53, 1, 5, 29, 57, 1, 59, 1, 61, 31, 7, 1, 1, 1, 67, 35, 69, 1, 71, 1, 73, 37, 25, 1, 77, 1, 79, 41, 81, 1, 83, 1, 85, 43, 29, 1, 89, 1, 91, 47, 93, 1, 19, 1, 97, 49, 33, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Comments

Note: a(352) = 1 even though A280703(352) = 3 as A003961(352) = 3159 = 3^5 * 13, while A250469(352) = 1053 = 3^4 * 13. (Thus also A266645(352) = 176 = 352/2.) Question: Are there more n for which A003961(n) = k*A250469(n) for some integer k > 1 ? Cf. also comments in A280703.

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Function[t, t/GCD[t, f@ First@ #2]][Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1]] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017, Version 10 *)
  • Scheme
    (define (A280704 n) (/ (A250469 n) (A280702 n)))

Formula

a(n) = A250469(n) / A280702(n) = A250469(n) / gcd(A003961(n),A250469(n)).
A280701(n) = n - a(n).

A283465 a(n) = A046523(A250469(n)).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 6, 4, 8, 2, 6, 2, 6, 6, 12, 2, 6, 2, 6, 6, 12, 2, 6, 4, 12, 6, 16, 2, 6, 2, 6, 6, 12, 6, 30, 2, 6, 6, 12, 2, 6, 2, 6, 6, 24, 2, 6, 4, 12, 8, 12, 2, 6, 6, 30, 6, 12, 2, 6, 2, 6, 6, 24, 6, 30, 2, 6, 12, 12, 2, 6, 2, 6, 6, 36, 6, 30, 2, 6, 6, 32, 2, 6, 6, 30, 6, 12, 2, 6, 6, 30, 6, 12, 6, 30, 2, 6, 12, 24, 2, 6, 2, 6, 6, 60
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A250469(n)) = A046523(A266645(n)).

A346476 a(n) = 2*n - A250469(n).

Original entry on oeis.org

1, 1, 1, -1, 3, -3, 3, -5, -7, -7, 9, -9, 9, -11, -5, -13, 15, -15, 15, -17, -13, -19, 17, -21, 1, -23, -11, -25, 27, -27, 25, -29, -19, -31, -7, -33, 33, -35, -17, -37, 39, -39, 39, -41, -25, -43, 41, -45, -23, -47, -23, -49, 47, -51, 19, -53, -31, -55, 57, -57, 55, -59, -29, -61, 11, -63, 63, -65, -37
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A280692(n) - A252748(n).
a(n) = A033879(n) - A346473(n).
a(n) = A346478(n) - A346477(n).
a(n) = n - A347378(n).
a(A000040(n)) = -A252748(A000040(n)) = -A346477(A000040(n)) = A062234(n).

A346480 Sum of A250469 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 30, 0, 27, 25, 42, 0, 45, 0, 66, 70, 45, 0, 75, 0, 99, 110, 78, 0, 3, 49, 102, 125, 135, 0, 60, 0, 81, 130, 114, 154, -39, 0, 138, 170, 15, 0, 60, 0, 261, 175, 174, 0, 117, 121, 231, 190, 297, 0, -225, 182, 3, 230, 186, 0, -381, 0, 222, 275, 189, 238, 360, 0, 423, 290, 216, 0, 381, 0, 246, 245, 459
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2021

Keywords

Crossrefs

Cf. also A346478.

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA250469(n)));
    A346479(n) = v346479[n];
    A346480(n) = (A250469(n)+A346479(n));
    
  • PARI
    A346480(n) = if(1==n, 2, -sumdiv(n,d,if((1==d)||n==d,0,A250469(d)*A346479(n/d)))); \\ (Demonstrates the convolution formula).

Formula

a(n) = A250469(n) + A346479(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A250469(d) * A346479(n/d).

A347376 Möbius transform of A250469.

Original entry on oeis.org

1, 2, 4, 6, 6, 8, 10, 12, 20, 18, 12, 12, 16, 26, 24, 24, 18, 16, 22, 24, 40, 48, 28, 24, 42, 56, 40, 36, 30, 24, 36, 48, 68, 78, 60, 36, 40, 86, 74, 48, 42, 32, 46, 60, 60, 104, 52, 48, 110, 78, 102, 72, 58, 68, 72, 72, 118, 138, 60, 48, 66, 144, 80, 96, 96, 52, 70, 96, 142, 84, 72, 72, 78, 176, 108, 108, 120, 70
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2021

Keywords

Comments

Question: Are all terms positive?

Crossrefs

Programs

  • PARI
    up_to = 10000;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A250469(n) = if(1==n,n,my(spn = nextprime(1+A020639(n)), c = A078898(n), k = 0); while(c, k++; if((1==k)||(A020639(k)>=spn),c -= 1)); (k*spn));
    A347376(n) = sumdiv(n,d,moebius(n/d)*A250469(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A250469(d).
a(n) = A003972(n) - A347377(n).

A269851 a(0) = 1, a(A087686(1+n)) = 2*a(n), a(A088359(n)) = A250469(a(n)), where A088359 and A087686 = numbers that occur only once (resp. more than once) in A004001.

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 5, 6, 16, 21, 25, 7, 18, 15, 10, 12, 32, 45, 55, 49, 11, 42, 51, 35, 50, 27, 14, 36, 33, 30, 20, 24, 64, 93, 115, 91, 121, 13, 90, 123, 125, 77, 110, 147, 65, 98, 39, 22, 84, 105, 85, 102, 87, 70, 100, 57, 54, 28, 72, 69, 66, 60, 40, 48, 128, 189, 235, 203, 187, 169, 17, 186, 267, 305, 217, 143, 230
Offset: 0

Views

Author

Antti Karttunen, Mar 07 2016

Keywords

Comments

Permutation of natural numbers obtained from the sieve of Eratosthenes, combined with the permutation obtained from Hofstadter-Conway $10000 sequence (A004001). Note the indexing: Domain starts from 0, range from 1.

Crossrefs

Inverse: A269852.
Related or similar permutations: A252755, A267111, A269855.

Formula

a(0) = 1, a(1) = 2, for n > 1, if A093879(n-1) = 0 [when n is in A087686], a(n) = 2*a(n - A004001(n)), otherwise [when n is in A088359], a(n) = A250469(a(A004001(n)-1)).
As a composition of related permutations:
a(n) = A252755(A267111(n)).
Other identities. For all n >= 0:
a(2^n) = 2^(n+1).

A269855 a(0) = 1, a(1) = 2, after which, a(nth_odious_number_larger_than_one(n)) = A250469(a(n)), a(nth_evil_number_larger_than_zero(n)) = 2*a(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 7, 10, 12, 15, 16, 21, 25, 18, 11, 14, 20, 27, 24, 33, 35, 30, 32, 45, 55, 42, 49, 50, 36, 51, 13, 22, 28, 39, 40, 57, 65, 54, 48, 69, 85, 66, 77, 70, 60, 87, 64, 93, 115, 90, 91, 110, 84, 123, 121, 98, 100, 147, 72, 105, 125, 102, 17, 26, 44, 63, 56, 81, 95, 78, 80, 117, 145, 114, 119, 130, 108, 159, 96
Offset: 0

Views

Author

Antti Karttunen, Mar 07 2016

Keywords

Comments

Permutation of natural numbers obtained from the sieve of Eratosthenes, combined with the inverse of Gray code. Note the indexing: Domain starts from 0, range from 1.

Crossrefs

Inverse: A269856.
Related or similar permutations: A006068, A252755, A269851.

Formula

a(0) = 1, a(1) = 2, for n > 1, if A010060(n) = 1 [when n is one of the odious numbers A000069], a(n) = A250469(a(A115384(n)-1)), otherwise [when n is one of the evil numbers A001969], a(n) = 2*a(A245710(n)).
As a composition of other permutations:
a(n) = A252755(A006068(n)).

A269857 Permutation of natural numbers: a(1) = 1; if n is an odd prime, a(n) = A250469(a(A026233(n))), else a(n) = 2*(a(A026233(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 10, 12, 7, 18, 15, 16, 20, 24, 25, 14, 21, 36, 30, 32, 27, 40, 48, 50, 28, 42, 33, 72, 11, 60, 64, 54, 80, 96, 51, 100, 56, 84, 35, 66, 45, 144, 22, 120, 57, 128, 108, 160, 192, 102, 69, 200, 112, 168, 70, 132, 49, 90, 39, 288, 44, 240, 114, 256, 55, 216, 320, 384, 105, 204, 87, 138, 400
Offset: 1

Views

Author

Antti Karttunen, Mar 06 2016

Keywords

Crossrefs

Inverse: A269858.
Related or similar permutations: A071574, A252755, A269847.
Differs from A269847 for the first time at n=19, where a(19)=21, while A269847(19)=27.

Formula

a(1) = 1; if n is an odd prime, a(n) = A250469(a(A026233(n))), else a(n) = 2*(a(A026233(n))).
As a composition of other permutations:
a(n) = A252755(A071574(n)).

A279348 a(1) = 1, for n > 1, if A079559(n) = 0, a(n) = 2*a(A256992(n)), otherwise a(n) = A250469(a(A256992(n))).

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 9, 10, 15, 11, 8, 12, 14, 25, 27, 18, 35, 13, 20, 30, 21, 33, 22, 39, 49, 16, 24, 28, 50, 65, 51, 54, 77, 17, 36, 70, 57, 87, 26, 55, 85, 40, 60, 42, 63, 95, 66, 121, 45, 44, 78, 69, 81, 98, 147, 119, 32, 48, 56, 100, 130, 125, 159, 102, 143, 19, 108, 154, 105, 207, 34, 145, 215, 72, 140, 114, 75, 91, 174, 133, 117, 52
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2016

Keywords

Crossrefs

Inverse: A279349.
Related or similar permutations: A250245, A252753, A252755, A279338, A279341, A279343.

Programs

Formula

a(1) = 1, for n > 1, if A079559(n) = 0 [when n is a term of A055938], a(n) = 2*a(A256992(n)), otherwise a(n) = A250469(a(A256992(n))).
As a composition of other permutations:
a(n) = A250245(A279338(n)).
a(n) = A252753(A279343(n)).
a(n) = A252755(A279341(n)).
Previous Showing 21-30 of 56 results. Next