A254215
Number of length n 1..(5+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.
Original entry on oeis.org
3, 2, 12, 24, 70, 192, 633, 2484, 10554, 35054, 102520, 337948, 1366804, 6000028, 24951622, 94266262, 337342046, 1263530794, 5269371063, 23209051416, 98571237345, 383041820280, 1353435250769, 4542413798878, 16490190511798, 76615460665948, 434914649543770
Offset: 1
Some solutions for n=4:
..6....6....6....4....4....1....4....1....4....4....4....4....1....6....1....6
..2....2....4....6....6....5....5....5....2....2....6....2....3....4....5....4
..6....7....2....4....2....3....3....6....4....6....2....3....2....6....4....2
..4....1....4....6....4....1....6....4....6....4....6....1....4....4....6....6
A254216
Number of length n 1..(6+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.
Original entry on oeis.org
4, 8, 32, 96, 373, 1472, 6490, 28190, 109811, 428042, 1877657, 8933652, 41803166, 184319728, 792231146, 3584762414, 17422197427, 85469221254, 398370084189, 1733366825266, 7251337491976, 32000172689890, 165843262226680, 977297442443092, 5688296579514244
Offset: 1
Some solutions for n=4:
..6....6....4....1....4....4....8....1....8....6....6....8....1....6....8....4
..4....4....5....5....8....2....4....7....2....8....2....2....3....4....2....5
..6....2....1....4....4....4....2....2....8....2....7....6....4....2....8....7
..8....8....8....6....8....8....8....6....4....8....1....4....8....6....6....8
A254217
Number of length n 1..(7+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.
Original entry on oeis.org
5, 12, 48, 168, 766, 3720, 18214, 81428, 362910, 1828848, 9781293, 49824190, 241134125, 1198202218, 6489872942, 36558663886, 196996500006, 982525116524, 4694315336320, 23819615009274, 140719786602875, 913403203820358, 5715151962243604, 32271875770787666
Offset: 1
Some solutions for n=4:
..6....4....4....6....4....8....4....4....1....4....1....8....1....4....9....6
..8....8....6....9....6....2....2....8....3....2....8....1....5....8....3....4
..2....2....2....3....5....5....3....3....5....3....5....6....6....4....4....5
..4....6....8....9....9....1....1....9....1....9....1....9....4....8....8....1