cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A258421 Number of partitions of the 7-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.

Original entry on oeis.org

2162160, 196756560, 10778727960, 463305056760, 17266750912320, 586609859314080, 18699578507549520, 569565504689176800, 16777853060738524020, 482011338862966969980, 13586929812483090607600, 377442353035435719228120, 10367784656620152180344310
Offset: 7

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Crossrefs

Column k=7 of A255982.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    a:= n-> T(n, 7):
    seq(a(n), n=7..25);

A258422 Number of partitions of the 8-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.

Original entry on oeis.org

57657600, 6895848960, 485566099200, 26364414061440, 1224007231940640, 51216101151626880, 1991943704397427200, 73440737647137519120, 2601107886874207253760, 89332305977055996111040, 2995343867463073686769440, 98555316817167057069129600
Offset: 8

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Crossrefs

Column k=8 of A255982.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    a:= n-> T(n, 8):
    seq(a(n), n=8..25);

A258423 Number of partitions of the 9-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.

Original entry on oeis.org

1764322560, 268497815040, 23638153069440, 1582270134681600, 89523597871058400, 4521537191138385600, 210558053896067770200, 9231136974969952417200, 386479930120038746283600, 15609810973119409265234400, 612788961533595085909010880, 23513250306172521375772885440
Offset: 9

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Crossrefs

Column k=9 of A255982.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    a:= n-> T(n, 9):
    seq(a(n), n=9..25);

A258424 Number of partitions of the 10-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.

Original entry on oeis.org

60949324800, 11504185056000, 1238502000960000, 100203614366688000, 6786584967157027200, 406962991813415247000, 22343812436173975084800, 1147985274106305649476000, 56030531363859577353444000, 2626132408521540739815456000, 119149819949135773678717267200
Offset: 10

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Crossrefs

Column k=10 of A255982.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    a:= n-> T(n, 10):
    seq(a(n), n=10..25);

A258425 Total number of partitions of all hypercubes resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each dimension is used at least once.

Original entry on oeis.org

1, 1, 6, 64, 1020, 21854, 590248, 19268098, 738194780, 32481348812, 1614506203400, 89478362311442, 5471239864890436, 365900668319641264, 26569358218427144576, 2081825562568924254126, 175078869470374599592604, 15730138729512408087404292
Offset: 0

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Examples

			a(2) = 2 + 4 = 6:
In one dimension:    [||-],  [-||]
.                    .___.   .___.   .___.   .___.
In two dimensions:   |_| |   | |_|   |_|_|   |___|
.                    |_|_|   |_|_|   |___|   |_|_| .
		

Crossrefs

Row sums of A255982.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= proc(n, k) option remember;
          add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    a:= n-> add(T(n,k), k=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[t==0, 1, If[t==1, A[n-1, k], Sum[A[j, k]* b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n==0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; T[n_, k_] := T[n, k] = Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := Sum[T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)

Formula

a(n) = Sum_{k=0..n} A255982(n,k).
a(n) ~ 2^(2*n-5/8) * n^(n-1) / (exp(n) * (log(2))^(n+1)). - Vaclav Kotesovec, May 30 2015
Previous Showing 11-15 of 15 results.