cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A258479 Number of partitions of n into two sorts of parts having exactly 9 parts of the second sort.

Original entry on oeis.org

1, 11, 67, 298, 1080, 3379, 9453, 24204, 57658, 129335, 275693, 562454, 1104484, 2097247, 3865383, 6937016, 12154390, 20838939, 35029203, 57829458, 93897437, 150150058, 236723504, 368350864, 566187387, 860416074, 1293614426, 1925547270, 2839214222, 4149449828
Offset: 9

Views

Author

Alois P. Heinz, May 31 2015

Keywords

Crossrefs

Column k=9 of A256193.

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
           binomial(j, t), t=0..min(9, j)), j=0..n/i))), x, 10)
        end:
    a:= n-> coeff(b(n$2), x, 9):
    seq(a(n), n=9..40);

A258480 Number of partitions of n into two sorts of parts having exactly 10 parts of the second sort.

Original entry on oeis.org

1, 12, 79, 377, 1457, 4836, 14289, 38493, 96151, 225486, 501180, 1063635, 2168132, 4265393, 8130869, 15067991, 27222865, 48062380, 83093629, 140925603, 234830485, 384989926, 621737584, 990119455, 1556378360, 2416887471, 3710698393, 5636503638, 8476224739
Offset: 10

Views

Author

Alois P. Heinz, May 31 2015

Keywords

Crossrefs

Column k=10 of A256193.

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
           binomial(j, t), t=0..min(10, j)), j=0..n/i))), x, 11)
        end:
    a:= n-> coeff(b(n$2), x, 10):
    seq(a(n), n=10..40);

A278464 Total number of parts of the second sort in all partitions of n into two sorts of parts.

Original entry on oeis.org

0, 1, 5, 17, 53, 145, 385, 957, 2333, 5493, 12741, 28941, 65049, 144225, 317229, 691457, 1497901, 3224145, 6906969, 14726701, 31282421, 66211253, 139720445, 294007373, 617154865, 1292516577, 2701451621, 5635565761, 11736442005, 24403092657, 50666528209
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2016

Keywords

Comments

a(n) is odd for n > 0.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1/2, 0], `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, (p-> p+[0, p[1]])(2*b(n-i, i)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]];
    a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]] . Range[0, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A256193(n,k).
Previous Showing 11-13 of 13 results.