cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A321038 Number of words of length 3n such that all letters of the octonary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.

Original entry on oeis.org

43263, 7104240, 694377450, 52825297536, 3463906615356, 206132702914710, 11470240358743842, 608199451197152100, 31120996552066805175, 1550313320809537870320, 75665062766954753664390, 3635046065217379316477688, 172499755061750807257325550
Offset: 8

Views

Author

Alois P. Heinz, Oct 26 2018

Keywords

Crossrefs

Column k=8 of A256311.

Programs

  • Maple
    b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)):
    a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(8):
    seq(a(n), n=8..25);

A321039 Number of words of length 3n such that all letters of the nonary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.

Original entry on oeis.org

246675, 52676325, 6567205788, 627427976340, 51015901999920, 3724987212716133, 252083271295845990, 16134288197281838562, 990146359650754095405, 58830559749207291469515, 3408249740757631887365820, 193544431133535679583811150, 10816879949695374764949152976
Offset: 9

Views

Author

Alois P. Heinz, Oct 26 2018

Keywords

Crossrefs

Column k=9 of A256311.

Programs

  • Maple
    b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)):
    a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(9):
    seq(a(n), n=9..25);

A321040 Number of words of length 3n such that all letters of the denary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.

Original entry on oeis.org

1430715, 385671000, 59757446980, 7005490433656, 691555233881785, 60757817462444531, 4909804407096952946, 372791285261732999200, 26986460830582840320825, 1882051044395835159556710, 127426007577261157375345878, 8424538202077517861490125956
Offset: 10

Views

Author

Alois P. Heinz, Oct 26 2018

Keywords

Crossrefs

Column k=10 of A256311.

Programs

  • Maple
    b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)):
    a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(10):
    seq(a(n), n=10..25);

A321041 Number of words of length 6n such that all letters of the n-ary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.

Original entry on oeis.org

1, 1, 97, 29886, 16482191, 13337746758, 14329297278912, 19256258184412314, 31120996552066805175, 58830559749207291469515, 127426007577261157375345878, 311250333529456439224989700168, 846594239519776323268829614117536, 2538054216720547203941994076323844425
Offset: 0

Views

Author

Alois P. Heinz, Oct 26 2018

Keywords

Crossrefs

Cf. A256311.

Formula

a(n) = A256311(2n,n).
Previous Showing 11-14 of 14 results.