cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A257885 Sequence (a(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 2.

Original entry on oeis.org

0, 1, 4, 2, 6, 3, 8, 7, 13, 5, 12, 20, 9, 18, 11, 21, 15, 10, 22, 33, 14, 27, 17, 31, 16, 32, 19, 34, 25, 42, 24, 43, 23, 41, 29, 49, 26, 47, 30, 52, 28, 51, 35, 59, 37, 62, 36, 63, 38, 64, 50, 46, 74, 39, 68, 40, 70, 101, 44, 76, 45, 78, 48, 82, 53, 88, 54
Offset: 1

Views

Author

Clark Kimberling, May 13 2015

Keywords

Comments

Algorithm: For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257883 for a guide to related sequences.

Examples

			a(1) = 0, d(1) = 2;
a(2) = 1, d(2) = 1;
a(3) = 4, d(3) = 3;
a(4) = 2, d(4) = -2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; d[1] = 2; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]]
    Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h,
       d[k + 1] = h, k = k + 1}, {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257885 *)
    Table[d[k], {k, 1, zz}] (* A257902 *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.

A257902 Sequence (d(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 2.

Original entry on oeis.org

2, 1, 3, -2, 4, -3, 5, -1, 6, -8, 7, 8, -11, 9, -7, 10, -6, -5, 12, 11, -19, 13, -10, 14, -15, 16, -13, 15, -9, 17, -18, 19, -20, 18, -12, 20, -23, 21, -17, 22, -24, 23, -16, 24, -22, 25, -26, 27, -25, 26, -14, -4, 28, -35, 29, -28, 30, 31, -57, 32, -31, 33
Offset: 1

Views

Author

Clark Kimberling, May 13 2015

Keywords

Comments

Algorithm: For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257883 for a guide to related sequences.

Examples

			a(1) = 0, d(1) = 2;
a(2) = 1, d(2) = 1;
a(3) = 4, d(3) = 3;
a(4) = 2, d(4) = -2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; d[1] = 2; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]]
    Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h,
       d[k + 1] = h, k = k + 1}, {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257885 *)
    Table[d[k], {k, 1, zz}]      (* A257902 *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.

A257903 Sequence (a(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 3.

Original entry on oeis.org

0, 1, 3, 2, 6, 4, 9, 5, 11, 8, 15, 7, 16, 10, 18, 13, 23, 12, 24, 14, 25, 38, 17, 31, 19, 34, 20, 36, 21, 39, 22, 41, 28, 45, 26, 46, 30, 51, 27, 49, 29, 52, 43, 67, 32, 57, 35, 61, 33, 60, 37, 65, 40, 69, 42, 72, 54, 47, 78, 44, 76, 50, 83, 53, 87, 48, 84
Offset: 1

Views

Author

Clark Kimberling, May 13 2015

Keywords

Comments

Algorithm: For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257883 for a guide to related sequences.

Examples

			a(1) = 0, d(1) = 3;
a(2) = 1, d(2) = 1;
a(3) = 3, d(3) = 2;
a(4) = 2, d(4) = -1.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; d[1] = 3; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]]
    Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h,
       d[k + 1] = h, k = k + 1}, {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257903 *)
    Table[d[k], {k, 1, zz}]      (* A257904 *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.

A257904 Sequence (d(n)) generated by Algorithm (in Comments) with a(1) = 0 and d(1) = 2.

Original entry on oeis.org

3, 1, 2, -1, 4, -2, 5, -4, 6, -3, 7, -8, 9, -6, 8, -5, 10, -11, 12, -10, 11, 13, -21, 14, -12, 15, -14, 16, -15, 18, -17, 19, -13, 17, -19, 20, -16, 21, -24, 22, -20, 23, -9, 24, -35, 25, -22, 26, -28, 27, -23, 28, -25, 29, -27, 30, -18, -7, 31, -34, 32, -26
Offset: 1

Views

Author

Clark Kimberling, May 13 2015

Keywords

Comments

Algorithm: For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1). Let h be the least integer > -a(k) such that h is not in D(k) and a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and repeat inductively.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257883 for a guide to related sequences.

Examples

			a(1) = 0, d(1) = 2;
a(2) = 1, d(2) = 1;
a(3) = 4, d(3) = 3;
a(4) = 2, d(4) = -2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; d[1] = 3; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]]
    Table[{h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h,
       d[k + 1] = h, k = k + 1}, {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257903 *)
    Table[d[k], {k, 1, zz}]      (* A257904 *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.

A257915 Sequence (d(n)) generated by Rule 1 (in Comments) with a(1) = 0 and d(1) = 3.

Original entry on oeis.org

3, 1, 2, -1, 4, -2, 5, -4, 6, -3, 7, -5, 8, -6, 9, -7, 10, -8, -9, 12, 11, -10, 13, -11, 14, -13, 15, -12, 16, -14, -15, 18, 17, -16, 19, -17, 20, -19, -18, 22, 21, -20, 23, -22, 24, -21, 25, -23, 26, -25, 27, -24, 28, -26, -27, 30, -28, 29, 31, -29, 32, -31
Offset: 1

Views

Author

Clark Kimberling, May 12 2015

Keywords

Comments

This is the sequence (d(n)) of differences associated with the sequence a = A257877.
Rule 1 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the greatest such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257705 for a guide to related sequences.

Examples

			a(1) = 0, d(1) = 3;
a(2) = 1, d(2) = 1;
a(3) = 3, d(3) = 2;
a(4) = 2, d(4) = -1.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; d[1] = 3; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]];
    s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]];
    Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257877 *)
    Table[d[k], {k, 1, zz}]  (* A257915 *)

Formula

d(k) = a(k) - a(k-1) for k >= 2, where a(k) = A257877(k).

A257918 Sequence (d(n)) generated by Rule 1 (in Comments) with a(1) = 2 and d(1) = 2.

Original entry on oeis.org

2, -1, 3, 1, -2, 4, 5, -3, 6, -4, -5, 7, 8, -7, -6, 9, 10, -8, -9, 12, 11, -10, 13, -11, 14, -13, 15, -12, 16, -14, -15, 18, -16, 17, 19, -17, 20, -19, -18, 22, 21, -20, 23, -22, 24, -21, -23, 25, 26, -24, 27, -25, 28, -26, -27, 30, -28, 29, 31, -29, 32, -31
Offset: 1

Views

Author

Clark Kimberling, May 13 2015

Keywords

Comments

This is the sequence (d(n)) of differences associated with the sequence a = A257882.
Rule 1 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the greatest such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257705 for a guide to related sequences.

Examples

			a(1) = 2, d(1) = 2;
a(2) = 1, d(2) = -1;
a(3) = 4, d(3) = 3;
a(4) = 5, d(4) = 1.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 2; d[1] = 2; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]];
    s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]];
    Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257882 *)
    Table[d[k], {k, 1, zz}]      (* A257918 *)

Formula

d(k) = a(k) - a(k-1) for k >=2, where a(k) = A257882(k).

A257876 Sequence (a(n)) generated by Rule 1 (in Comments) with a(1) = 0 and d(1) = 2.

Original entry on oeis.org

0, 1, 4, 3, 7, 5, 2, 8, 13, 9, 16, 11, 19, 12, 6, 15, 25, 17, 28, 18, 30, 21, 10, 23, 37, 24, 39, 27, 43, 29, 14, 31, 49, 33, 52, 35, 55, 36, 57, 34, 56, 38, 61, 41, 20, 44, 22, 47, 73, 48, 75, 51, 79, 53, 26, 58, 87, 59, 89, 60, 91, 54, 88, 50, 83, 42, 77
Offset: 1

Views

Author

Clark Kimberling, May 12 2015

Keywords

Comments

Rule 1 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the greatest such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257705 for a guide to related sequences.

Examples

			a(1) = 0, d(1) = 2;
a(2) = 1, d(2) = 1;
a(3) = 3, d(3) = 3;
a(4) = 4, d(4) = -1.
The first terms of (d(n)) are (2,1,3,-1,4,-2,-3,6,5,...), which differs from A131389 only in initial terms.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; d[1] = 2; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]];
    s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]];
    Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257876 *)
    Table[d[k], {k, 1, zz}]      (* A131389 essentially *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.

A257878 Sequence (a(n)) generated by Rule 1 (in Comments) with a(1) = 1 and d(1) = 1.

Original entry on oeis.org

1, 3, 2, 5, 9, 7, 4, 10, 6, 11, 18, 13, 21, 15, 8, 17, 27, 19, 30, 20, 32, 23, 12, 25, 39, 26, 14, 29, 45, 31, 16, 33, 51, 35, 54, 37, 57, 38, 59, 41, 63, 43, 22, 46, 24, 47, 72, 49, 75, 50, 77, 53, 81, 55, 28, 58, 87, 56, 88, 60, 91, 62, 95, 65, 99, 67, 34
Offset: 1

Views

Author

Clark Kimberling, May 12 2015

Keywords

Comments

Rule 1 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the greatest such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257705 for a guide to related sequences.
Considering the first 1000 elements of this sequence and A257705 it appears that this is the same as A257705 apart from an index shift. - R. J. Mathar, May 14 2015

Examples

			a(1) = 1, d(1) = 1;
a(2) = 3, d(2) = 2;
a(3) = 2, d(3) = -1;
a(4) = 5, d(4) = -3.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; d[1] = 1; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]];
    s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]];
    Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257878 *)
    Table[d[k], {k, 1, zz}]      (* A131389 essentially *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.

A257881 Sequence (a(n)) generated by Rule 1 (in Comments) with a(1) = 2 and d(1) = 1.

Original entry on oeis.org

2, 1, 3, 6, 4, 8, 5, 10, 16, 12, 7, 14, 22, 15, 9, 18, 28, 20, 11, 23, 13, 24, 37, 26, 40, 27, 42, 30, 46, 32, 17, 34, 52, 36, 19, 38, 58, 39, 21, 43, 64, 44, 67, 45, 69, 48, 25, 50, 76, 51, 78, 54, 82, 56, 29, 59, 31, 60, 91, 62, 94, 63, 33, 66, 100, 68, 35
Offset: 1

Views

Author

Clark Kimberling, May 13 2015

Keywords

Comments

Rule 1 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the greatest such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) + h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
Conjecture: if a(1) is an nonnegative integer and d(1) is an integer, then (a(n)) is a permutation of the nonnegative integers (if a(1) = 0) or a permutation of the positive integers (if a(1) > 0). Moreover, (d(n)) is a permutation of the integers if d(1) = 0, or of the nonzero integers if d(1) > 0.
See A257705 for a guide to related sequences.

Examples

			a(1) = 2, d(1) = 0;
a(2) = 1, d(2) = -1;
a(3) = 3, d(3) = 2;
a(4) = 6, d(4) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 2; d[1] = 1; k = 1; z = 10000; zz = 120;
    A[k_] := Table[a[i], {i, 1, k}]; diff[k_] := Table[d[i], {i, 1, k}];
    c[k_] := Complement[Range[-z, z], diff[k]];
    T[k_] := -a[k] + Complement[Range[z], A[k]];
    s[k_] := Intersection[Range[-a[k], -1], c[k], T[k]];
    Table[If[Length[s[k]] == 0, {h = Min[Intersection[c[k], T[k]]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}, {h = Max[s[k]], a[k + 1] = a[k] + h, d[k + 1] = h, k = k + 1}], {i, 1, zz}];
    u = Table[a[k], {k, 1, zz}]  (* A257881 *)
    Table[d[k], {k, 1, zz}]  (* essentially A257880 *)

Formula

a(k+1) - a(k) = d(k+1) for k >= 1.
Previous Showing 11-19 of 19 results.