A320216
Number of multisets of nonempty words with a total of n letters over senary alphabet such that all letters occur at least once in the multiset.
Original entry on oeis.org
4051, 114402, 1918083, 24917060, 277491084, 2788377264, 26047147641, 230519395506, 1957678084920, 16097696173138, 129006208397535, 1012503732847524, 7811457988379140, 59410698772806630, 446452429135687776, 3320813986603421328, 24485059125388934799
Offset: 6
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(6):
seq(a(n), n=6..25);
A320217
Number of multisets of nonempty words with a total of n letters over septenary alphabet such that all letters occur at least once in the multiset.
Original entry on oeis.org
37633, 1394414, 30044014, 493609088, 6864854521, 85265606888, 976232236182, 10515038040403, 108038163343516, 1069407324384749, 10272179741315583, 96275040557582796, 884152621318502522, 7982464409593829883, 71036604818774830215, 624423552992566806913
Offset: 7
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(7):
seq(a(n), n=7..25);
A320218
Number of multisets of nonempty words with a total of n letters over octonary alphabet such that all letters occur at least once in the multiset.
Original entry on oeis.org
394353, 18536744, 498516252, 10092149744, 171141602198, 2569517304288, 35303763087512, 453509029790240, 5527943088161719, 64619198312435832, 730123641203028584, 8021699561768649792, 86097120229812852336, 906057856878889742408, 9376575130404097999848
Offset: 8
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
seq(a(n), n=8..25);
A320219
Number of multisets of nonempty words with a total of n letters over nonary alphabet such that all letters occur at least once in the multiset.
Original entry on oeis.org
4596553, 267009498, 8759066967, 214009517289, 4341556649997, 77402791217151, 1254856577798877, 18917548771779954, 269340155175667401, 3662449762145471938, 47963634774469915293, 608844238997012412552, 7528868495379885600462, 91056717786483891773442
Offset: 9
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
seq(a(n), n=9..25);
A320220
Number of multisets of nonempty words with a total of n letters over denary alphabet such that all letters occur at least once in the multiset.
Original entry on oeis.org
58941091, 4143348470, 162731313045, 4718107140980, 112729591991185, 2351902614090062, 44373396691290660, 774761803780874980, 12721776529833584465, 198768703664184994530, 2981185419002290273673, 43212794112241851734090, 608596903477972496493095
Offset: 10
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):
seq(a(n), n=10..25);