cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A320216 Number of multisets of nonempty words with a total of n letters over senary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

4051, 114402, 1918083, 24917060, 277491084, 2788377264, 26047147641, 230519395506, 1957678084920, 16097696173138, 129006208397535, 1012503732847524, 7811457988379140, 59410698772806630, 446452429135687776, 3320813986603421328, 24485059125388934799
Offset: 6

Views

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=6 of A257740.
Cf. A320207.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(6):
    seq(a(n), n=6..25);

A320217 Number of multisets of nonempty words with a total of n letters over septenary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

37633, 1394414, 30044014, 493609088, 6864854521, 85265606888, 976232236182, 10515038040403, 108038163343516, 1069407324384749, 10272179741315583, 96275040557582796, 884152621318502522, 7982464409593829883, 71036604818774830215, 624423552992566806913
Offset: 7

Views

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=7 of A257740.
Cf. A320208.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(7):
    seq(a(n), n=7..25);

A320218 Number of multisets of nonempty words with a total of n letters over octonary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

394353, 18536744, 498516252, 10092149744, 171141602198, 2569517304288, 35303763087512, 453509029790240, 5527943088161719, 64619198312435832, 730123641203028584, 8021699561768649792, 86097120229812852336, 906057856878889742408, 9376575130404097999848
Offset: 8

Views

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=8 of A257740.
Cf. A320209.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
    seq(a(n), n=8..25);

A320219 Number of multisets of nonempty words with a total of n letters over nonary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

4596553, 267009498, 8759066967, 214009517289, 4341556649997, 77402791217151, 1254856577798877, 18917548771779954, 269340155175667401, 3662449762145471938, 47963634774469915293, 608844238997012412552, 7528868495379885600462, 91056717786483891773442
Offset: 9

Views

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=9 of A257740.
Cf. A320210.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
    seq(a(n), n=9..25);

A320220 Number of multisets of nonempty words with a total of n letters over denary alphabet such that all letters occur at least once in the multiset.

Original entry on oeis.org

58941091, 4143348470, 162731313045, 4718107140980, 112729591991185, 2351902614090062, 44373396691290660, 774761803780874980, 12721776529833584465, 198768703664184994530, 2981185419002290273673, 43212794112241851734090, 608596903477972496493095
Offset: 10

Views

Author

Alois P. Heinz, Oct 07 2018

Keywords

Crossrefs

Column k=10 of A257740.
Cf. A320211.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*k^d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):
    seq(a(n), n=10..25);
Previous Showing 11-15 of 15 results.