cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A281453 Expansion of f(x, x) * f(x^7, x^11) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 2, 4, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 6, 0, 0, 0, 1, 4, 0, 2, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 26 2017

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^4 + x^7 + 2*x^8 + 2*x^9 + 3*x^11 + 2*x^12 + ...
G.f. = q + 2*q^10 + 2*q^37 + q^64 + 2*q^73 + 2*q^82 + 3*q^100 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 1, KroneckerSymbol[ -4, #] &]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^7, x^18] QPochhammer[ -x^11, x^18] QPochhammer[ x^18], {x, 0, n}];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[# < 3, 1, # == 3, Mod[#2, 2] 2 + 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 1])];
  • PARI
    {a(n) = if( n<0, 0, sumdiv(9*n + 1, d, kronecker(-4, d)))};
    
  • PARI
    {a(n) = if( n<0, 0, my(m = 9*n + 1, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 1 || k%9 == 8), s+=(j>0)+1)); s)};
    
  • PARI
    {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};

Formula

f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 2*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 + x^(18*k-11)) * (1 + x^(18*k-7)) * (1 - x^(18*k)).
a(4*n + 2) = a(8*n + 5) = a(16*n + 3) = a(32*n + 31) = a(64*n + 55) = a(128*n + 39) = 0.
a(4*n + 3) = A281451(n). a(8*n + 1) = 2 * A281492(n). a(16*n + 7) = A281452(n). a(32*n + 15) = 2 * A281491(n). a(128*n + 103) = 2 * A281490(n).
a(n) = A122865(3*n) = A122856(6*n) = A258278(6*n) = a(64*n + 7). a(n) = -A256269(9*n + 1).
2 * a(n) = b(9*n + 1) where b = A105673, A122857, A258034, A259761. 2 * a(n) = - b(9*n+1) where b = A138949, A256280, A258292. 4 * a(n) = A004018(9*n + 1).
Convolution of A000122 and A205808.

A256014 Expansion of phi(-q^3)^4 / (phi(-q) * phi(-q^9)) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 4, 0, -2, -8, 0, 0, 4, -4, -4, 0, 0, 4, 0, 0, -2, -8, 4, 0, 8, 0, 0, 0, 0, 6, 8, 0, 0, -8, 0, 0, 4, 0, -4, 0, 4, 4, 0, 0, -4, -8, 0, 0, 0, -8, 0, 0, 0, 2, 12, 0, -4, -8, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, -16, 0, 0, 8, 0, 0, 0, 4, 4, 8, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Michael Somos, Jun 03 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 - 2*q^4 - 8*q^5 + 4*q^8 - 4*q^9 - 4*q^10 + 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^4 / (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^9]), {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^8 * eta(x^18 + A) / (eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^9 + A)^2), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2^(n%3) * (-1)^(n\3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};

Formula

Expansion of eta(q^2) * eta(q^3)^8 * eta(q^18) / (eta(q)^2 * eta(q^6)^4 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 2, 1, -6, 1, 2, -3, 2, 1, -4, 1, 2, -3, 2, 1, -6, 1, 2, -2, ...].
a(n) = (-1)^n * A256280(n). a(3*n + 1) = 2 * A258277(n). a(3*n + 2) = 4 * A258278(n). a(4*n) = A256280(n). a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0.
a(6*n + 2) = 4 * A122865(n). a(6*n + 4) = -2 * A122856(n). a(9*n) = A104794(n). a(12*n + 1) = A002175(n). a(12*n + 5) = -8 * A121444(n).

A256282 Expansion of f(-q^3) * psi(q^3)^3 / (psi(q) * psi(q^9)) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 1, 0, 1, -2, 0, 0, 1, -4, 2, 0, 0, -2, 0, 0, 1, -2, 4, 0, 2, 0, 0, 0, 0, -3, 2, 0, 0, -2, 0, 0, 1, 0, 2, 0, 4, -2, 0, 0, 2, -2, 0, 0, 0, -8, 0, 0, 0, -1, 3, 0, 2, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 1, -4, 0, 0, 2, 0, 0, 0, 4, -2, 2, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Jun 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - q + q^2 + q^4 - 2*q^5 + q^8 - 4*q^9 + 2*q^10 - 2*q^13 + q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q^(1/8) QPochhammer[ q^3] EllipticTheta[ 2, 0, q^(3/2)]^3 / (2 EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q^(9/2)]), {q, 0, n}];
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, {1, 2, -1, 0}[[Mod[#, 4, 1]]] If[ Divisible[#, 9], 4, 1] (-1)^(Boole[Mod[#, 8] == 6] + #) &]]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := If[ n < 1, Boole[ n==0 ], -Times @@ (Which[ # == 1, 1, # == 2, -1, Mod[#, 4] == 1, #2 + 1, True, If[# == 3, 4, 1] Mod[#2 + 1, 2]] & @@@ FactorInteger[n])]; (* Michael Somos, Jun 06 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A)^6 * eta(x^9 + A) / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^18 + A)^2), n))};

Formula

Expansion of eta(q) * eta(q^6)^6 * eta(q^9) / (eta(q^2)^2 * eta(q^3)^2 * eta(q^18)^2) in powers of q.
Euler transform of period 18 sequence [ -1, 1, 1, 1, -1, -3, -1, 1, 0, 1, -1, -3, -1, 1, 1, 1, -1, -2, ...].
Moebius transform is a period 72 sequence.
a(n) = (-1)^n * A258256(n). a(2*n) = A258256(n). a(3*n + 1) = - A258277(n). a(3*n + 2) = A258278(n). a(4*n + 3) = 0.
a(n) = -b(n) where b() is multiplicative with a(0) = 1, b(2^e) = -1 if e>0, b(3^e) = 2 * (1 + (-1)^e), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), a(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jun 06 2015

A257900 Expansion of 1/2 - (phi(-q)^2 + phi(-q^9)^2) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 2, 0, 0, -1, 2, -2, 0, 0, 2, 0, 0, -1, 2, -2, 0, -2, 0, 0, 0, 0, 3, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -2, 2, 0, 0, -2, 2, 0, 0, 0, 4, 0, 0, 0, 1, -3, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -2, 2, -2, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, May 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - q^2 - q^4 + 2*q^5 - q^8 + 2*q^9 - 2*q^10 + 2*q^13 - q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/2 - (EllipticTheta[ 4, 0, q]^2 + EllipticTheta[ 4, 0, q^9]^2) / 4, {q, 0, n}]; (* Michael Somos, Jun 02 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, -1, p%4==3, if( p>3, 1, 2) * (1-e%2), e+1)))};

Formula

Expansion of 1/2 - (eta(q)^4 * eta(q^18)^2 + eta(q^2)^2 * eta(q^9)^4) / (2 * eta(q^2) * eta(q^18))^2 in powers of q. - Michael Somos, Jun 02 2015
a(n) is multiplicative with a(2^e) = -1 if e>0, a(3^e) = 1 + (-1)^e if e>0, a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), a(p^e) = e+1 if p == 1 (mod 4).
a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(9*n) = 2 * A113652(n). a(9*n + 3) = a(9*n + 6) = 0.
-2 * a(n) = A258322(n) unless n = 0 or n == 2 (mod 3).
Sum_{k=1..n} abs(a(k)) ~ (5*Pi/18) * n. - Amiram Eldar, Jan 29 2024
Previous Showing 11-14 of 14 results.