A284824
Number of partitions of n copies of n^2 into distinct parts.
Original entry on oeis.org
1, 1, 1, 13, 401, 93151, 88853970, 482430702570
Offset: 0
a(3) = 13: [9;8,1;7,2], [9;8,1;6,3], [9;8,1;5,4], [9;8,1;4,3,2], [9;7,2;6,3], [9;7,2;5,4], [9;7,2;5,3,1], [9;6,3;5,4], [9;5,4;6,2,1], [8,1;7,2;6,3], [8,1;7,2;5,4], [8,1;6,3;5,4], [7,2;6,3;5,4].
A384180
Irregular triangle read by rows where row n lists the Heinz numbers of all uniform (equal multiplicities) and normal (covering an initial interval) multisets of length n.
Original entry on oeis.org
2, 4, 6, 8, 30, 16, 36, 210, 32, 2310, 64, 216, 900, 30030, 128, 510510, 256, 1296, 44100, 9699690, 512, 27000, 223092870, 1024, 7776, 5336100, 6469693230, 2048, 200560490130, 4096, 46656, 810000, 9261000, 901800900, 7420738134810, 8192, 304250263527210
Offset: 1
The uniform normal multisets of length 6 are: {1,1,1,1,1,1}, {1,1,1,2,2,2}, {1,1,2,2,3,3}, {1,2,3,4,5,6}, so row 6 is: 64, 216, 900, 30030.
Triangle begins:
2
4 6
8 30
16 36 210
32 2310
64 216 900 30030
128 510510
256 1296 44100 9699690
For just normal multisets we have
A324939.
A381431 is the section-sum transform.
-
Table[Table[Times@@Prime/@Range[d]^(n/d),{d,Divisors[n]}],{n,10}]
Comments