cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A258736 Number of length n+6 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

16384, 43681, 68120, 98676, 149960, 228081, 331584, 465580, 635992, 849708, 1114752, 1440474, 1837760, 2319263, 2899656, 3595908, 4427584, 5417170, 6590424, 7976754, 9609624, 11526989, 13771760, 16392300, 19442952, 22984600, 27085264
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Row 6 of A258730.

Examples

			Some solutions for n=4:
..2....1....1....2....0....0....2....1....3....0....2....1....0....3....0....0
..2....0....1....0....0....0....0....1....3....1....1....1....2....3....0....0
..0....1....2....0....2....2....0....0....2....0....1....2....3....0....2....3
..0....1....0....0....2....2....0....1....2....0....3....0....3....0....2....0
..2....1....0....0....2....0....0....2....2....3....3....2....1....0....0....0
..2....2....0....1....2....0....2....2....2....3....1....2....1....0....0....1
..3....3....2....2....2....0....0....3....0....0....1....2....1....1....0....3
..1....3....1....2....0....0....1....3....2....0....1....0....2....3....1....3
..3....3....1....3....2....1....2....1....2....3....3....0....3....1....2....0
..3....2....1....0....3....0....2....1....3....3....1....0....2....1....3....0
		

Crossrefs

Cf. A258730.

Formula

Empirical: a(n) = (1/5040)*n^7 + (1/72)*n^6 + (149/360)*n^5 + (239/36)*n^4 + (297247/720)*n^3 + (187297/72)*n^2 + (178036/35)*n + 2212 for n>4.
Empirical g.f.: x*(16384 - 87391*x + 177424*x^2 - 140720*x^3 - 31344*x^4 + 116775*x^5 - 39024*x^6 - 13988*x^7 - 31192*x^8 + 58867*x^9 - 31680*x^10 + 5890*x^11) / (1 - x)^8. - Colin Barker, Jan 26 2018

A258737 Number of length n+7 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

65536, 163020, 220854, 281136, 370510, 526672, 752180, 1038256, 1394568, 1831920, 2362442, 2999800, 3759427, 4658776, 5717596, 6958232, 8405950, 10089288, 12040434, 14295632, 16895617, 19886080, 23318164, 27248992, 31742228, 36868672
Offset: 1

Views

Author

R. H. Hardin, Jun 08 2015

Keywords

Comments

Row 7 of A258730.

Examples

			Some solutions for n=2:
..0....0....1....0....1....1....0....0....1....0....1....0....1....1....1....2
..3....1....0....1....0....2....0....1....0....3....0....2....1....2....3....0
..3....0....1....2....0....1....2....1....2....1....2....0....2....0....1....0
..1....0....1....1....1....3....3....0....1....3....0....3....2....3....1....3
..1....0....3....2....0....0....0....3....3....1....0....2....0....3....0....1
..1....1....3....0....3....1....0....3....2....1....0....3....0....3....0....3
..3....1....1....0....3....2....2....2....3....1....2....0....0....3....3....1
..3....2....1....0....0....0....2....3....3....1....3....3....1....1....0....2
..1....0....2....0....3....3....1....3....3....3....3....3....1....3....1....3
		

Crossrefs

Cf. A258730.

Formula

Empirical: a(n) = (1/5040)*n^7 + (11/720)*n^6 + (361/720)*n^5 + (1285/144)*n^4 + (40822/45)*n^3 + (1121411/180)*n^2 + (480457/35)*n + 7848 for n>5.
Empirical g.f.: x*(65536 - 361268*x + 751702*x^2 - 591152*x^3 - 236266*x^4 + 807960*x^5 - 664864*x^6 + 371040*x^7 - 206700*x^8 + 10940*x^9 + 117664*x^10 - 82072*x^11 + 17481*x^12) / (1 - x)^8. - Colin Barker, Jan 26 2018
Previous Showing 11-12 of 12 results.