cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A299401 Number of primitive weird numbers (PWN) of the form 2^n*p*q*r, where p,q,r are odd primes.

Original entry on oeis.org

2, 7, 12, 18, 41, 130
Offset: 1

Views

Author

M. F. Hasler, Feb 18 2018

Keywords

Comments

The analog of A258333 for three odd factors.
Note that this sequence counts PWN with nonsquarefree odd part, which are excluded from A258883, see also A273815.

Examples

			In the sequel, p,q,r denote arbitrary odd primes.
The a(1) = 2 PWN of the form 2*p*q*r are A258883(1..2): 4030 = 2*5*13*31 and 5830 = 2*5*11*53.
The a(2) = 7 PWN of the form 2^2*p*q*r are 45356, 91388, 243892, 254012, 338572, 343876 and 388076, with (p,q,r) = (17, 23, 29), (11, 31, 67), (11, 23, 241), (11, 23, 251), (13, 17, 383), (13, 17, 389) and (13, 17, 439).
The a(3) = 12 PWN of the form 2^3*p*q*r range from 1713592 to 173482552.
The a(4) = 18 PWN of the form 2^4*p*q*r range from 15126992 to 6587973136.
The a(5) = 41 PWN of the form 2^5*p*q*r range from 569494624 to 297512429728.
		

Crossrefs

Programs

  • PARI
    A299401(n,k=3,m=2^n,P=3,cnt=0,s)={if(k>1,forprime(p=P,,(s=sigma(m*p,-1))<2||next;p>P&&s*(1+1/p)^(k-1)<2&&break;/*printf("%d",[k,p]);*/cnt+=A299401(n,k-1,m*p,p)),s=sigma(m);my(p=1\(2*m/s-1)+1,d);while(PA005835(m*p,d=divisors(m*p),s+(s-m)*p,#d-1)&&cnt++));cnt}

A319735 Primitive weird numbers (pwn; A002975) congruent to 2 mod 4.

Original entry on oeis.org

70, 4030, 5830, 4199030, 1550860550, 66072609790
Offset: 1

Views

Author

M. F. Hasler and Robert G. Wilson v, Sep 26 2018

Keywords

Comments

Primitive weird numbers divisible by 2 but not by 4.
10805836895078390 = 2 * 5 * 11 * 89 * 167 * 829 * 7972687 is a term.

Examples

			a(1) is 70 = 2 * 5 * 7 with abundance of 4;
a(2) is 4030 = 2 * 5 * 13 * 31 with abundance of 4;
a(3) is 5830 = 2 * 5 * 11 * 53 with abundance of 4;
a(4) is 4199030 = 2 * 5 * 11 * 59 * 647 with abundance of 20;
a(5) is 1550860550 = 2 * 5^2 * 29 * 37 * 137 * 211 with abundance of 20;
a(6) is 66072609790 = 2 * 5 * 11 * 127^2 * 167 * 223 with abundance of 4; etc.
From _M. F. Hasler_, Nov 28 2018: (Start)
The larger terms are in other sequences related to PWN with many prime factors. We have the following relations:
   a(3) = 70 = A258882(1) = A258374(3) = A258250(1) = A002975(1).
   a(3) = 4030 = A258883(1) = A258374(4) = A258401(1) = A258250(3) = A002975(3).
   a(3) = 5830 = A258883(2) = A258401(2) = A258250(4) = A002975(4).
   a(4) = 4199030 = A258884(1) = A258374(5) = A258401(11) = A265727(15).
   a(5) = 1550860550 = A258885(1) = A273815(1) = A258374(6).
   a(6) = 66072609790 = A258885(3) = A273815(3). (End)
		

References

  • Gianluca Amato, Maximilian F. Hasler, Giuseppe Melfi, Maurizio Parton. Primitive weird numbers having more than three distinct prime factors. Rivista di Matematica della Università degli studi di Parma, 2016, 7(1), pp. 153-163. (hal-01684543)

Crossrefs

Programs

  • Mathematica
    (* import the b-file in A002975 and assign it to lst *);
    Select[lst, IntegerExponent[#, 2] == 1 &]

A322524 Primitive weird numbers (pwn; A002975) divisible by 4 but not 8.

Original entry on oeis.org

836, 45356, 91388, 243892, 254012, 338572, 343876, 388076, 29465852, 120888092, 259858324, 260378492, 410832532, 775397948, 785187524, 903217276, 989226964, 1609445332, 2358115084, 3254323124, 3381352084, 3381872252, 3781448788, 3782267372, 5056717796, 5065605532
Offset: 1

Views

Author

Robert G. Wilson v, Dec 13 2018

Keywords

Examples

			a(1) = 836 = 2^2 * 11 * 19;
a(2) = 45356 = 2^2 * 17 * 23 * 29;
a(3) = 91388 = 2^2 * 11 * 31 * 67; etc.
		

Crossrefs

Programs

  • Mathematica
    (* import the b-file in A002975 and assign it to lst *); Select[lst, IntegerExponent[#, 2] == 2 &]
Previous Showing 11-13 of 13 results.