A322370 For any n > 4: let p be the n-th prime number; a(n) is the least squarefree p-smooth integer congruent to 4 modulo p.
15, 30, 21, 42, 119, 33, 35, 78, 209, 133, 51, 57, 299, 65, 138, 217, 77, 399, 87, 93, 295, 105, 210, 111, 222, 230, 258, 266, 141, 143, 451, 155, 161, 330, 505, 177, 183, 185, 195, 390, 201, 203, 215, 1342, 231, 462, 237, 721, 1209, 255, 518, 267, 273, 546
Offset: 5
Keywords
Examples
For n = 7: - the 7th prime is 17, - the first squarefree 17-smooth integers s, alongside (s-4) mod 17, are: s 1 2 3 5 6 7 10 11 13 14 15 17 21 ------------ -- -- -- - - - -- -- -- -- -- -- -- (s-4) mod 17 14 15 16 1 2 3 6 7 9 10 11 13 0 - hence a(7) = 21.
Links
- Rémy Sigrist, Table of n, a(n) for n = 5..10000
- Andrew R. Booker, Carl Pomerance, Squarefree smooth numbers and Euclidean prime generators, arXiv:1607.01557 [math.NT], 2016-2017.
- Andrew R. Booker and Carl Pomerance, Squarefree smooth numbers and Euclidean prime generators, Proceedings of the American Mathematical Society 145 (2017), 5035-5042.
- Rémy Sigrist, Colored scatterplot of (n, a(n)) for n = 5..1000000 (where the color is function of (a(n)-4)/A000040(n)).
Programs
-
Mathematica
a[n_] := Module[{p = Prime[n], k = 4}, While[! SquareFreeQ[k] || FactorInteger[k][[-1, 1]] > p, k += p; Continue[]]; k]; Array[a, 100, 5] (* Amiram Eldar, Dec 08 2018 *)
-
PARI
a(n) = my (p=prime(n)); forstep (v=4, oo, p, if (issquarefree(v), my (f=factor(v)); if (f[#f~,1] <= p, return (v))))
Formula
a(n) = A261144(n, k) for some k in 1..2^n.
Comments