A293582
Number of compositions of n where each part i is marked with a word of length i over a quinary alphabet whose letters appear in alphabetical order and all five letters occur at least once in the composition.
Original entry on oeis.org
541, 13060, 195020, 2327960, 24418640, 235804122, 2152586500, 18883155160, 160908360260, 1341800118020, 11007289244964, 89168468504160, 715330888641680, 5694960569676240, 45067846839572000, 354959016901129928, 2785141532606257120, 21787375678321712160
Offset: 5
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(5):
seq(a(n), n=5..30);
-
b[n_, k_] := b[n, k] = If[n == 0, 1,
Sum[b[n - j, k] Binomial[j + k - 1, k - 1], {j, 1, n}]];
a[n_] := With[{k = 5}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[5, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
A293583
Number of compositions of n where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order and all six letters occur at least once in the composition.
Original entry on oeis.org
4683, 155928, 3116220, 48697048, 657516672, 8065687344, 92540869002, 1011476639976, 10662168594984, 109327852591208, 1097238662684028, 10827944900524680, 105430826499237004, 1015590292306277376, 9698300806656595584, 91961212434214073824, 866974686508851897168
Offset: 6
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(6):
seq(a(n), n=6..30);
A293584
Number of compositions of n where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order and all seven letters occur at least once in the composition.
Original entry on oeis.org
47293, 2075948, 53476920, 1058754564, 17866313444, 270907452704, 3807403790792, 50592275219138, 644225577441572, 7936529529027736, 95254972055989564, 1119634204276346052, 12939870424457764200, 147501747088827091436, 1662420626477581539972
Offset: 7
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(7):
seq(a(n), n=7..30);
A293585
Number of compositions of n where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order and all eight letters occur at least once in the composition.
Original entry on oeis.org
545835, 30532384, 984910128, 24082101504, 496274574936, 9104663637024, 153620123190816, 2434519831873920, 36763980389367378, 534505149483841568, 7538836344403305280, 103747819539055788640, 1399283448432865901624, 18560930972118370361856
Offset: 8
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
seq(a(n), n=8..30);
A293586
Number of compositions of n where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order and all nine letters occur at least once in the composition.
Original entry on oeis.org
7087261, 492006708, 19423259316, 574637640288, 14193955791576, 309660911167464, 6171397007611848, 114853532449557600, 2026594842428425320, 34277110454602760762, 560261324259420037164, 8904738970375872782112, 138290600270036591006520, 2106511986693346884064584
Offset: 9
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
seq(a(n), n=9..30);
A293587
Number of compositions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the composition.
Original entry on oeis.org
102247563, 8624400680, 408962920820, 14395560938040, 419691762832900, 10733397639516016, 249286917950186760, 5378992003398157520, 109550762660946047540, 2130231901794898870880, 39890088439337327537706, 724087830188007677450600, 12806950694169650253597100
Offset: 10
-
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(10):
seq(a(n), n=10..30);