cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A262132 Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= 7.

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99224, 893015, 9821203, 108031161, 1403167368, 18239614827, 273001402026, 4094100409041, 69325319221265, 1178005630046455, 22247669184972959, 422391796578333725, 8797758481967862297, 184548615259788777783
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2015

Keywords

Crossrefs

Column k=7 of A262124.

Formula

a(n) = A262124(n,7).

A262133 Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= 8.

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893024, 9823264, 108051897, 1404674661, 18256733309, 273850999635, 4104997257175, 69784953371975, 1184628370304553, 22507939035786507, 426574822311932257, 8958071268550577397, 187401362296416433302
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2015

Keywords

Crossrefs

Column k=8 of A262124.

Formula

a(n) = A262124(n,8).

A262134 Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= 9.

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823274, 108056013, 1404720092, 18261352963, 273907724376, 4108601566641, 69834315000567, 1187167554049581, 22546611220735671, 428370636959431545, 8988329939437212520, 188741185272961560031
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2015

Keywords

Crossrefs

Column k=9 of A262124.

Formula

a(n) = A262124(n,9).

A321280 Number T(n,k) of permutations p of [n] with exactly k descents such that the up-down signature of p has nonnegative partial sums; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 8, 1, 22, 22, 1, 52, 172, 1, 114, 856, 604, 1, 240, 3488, 7296, 1, 494, 12746, 54746, 31238, 1, 1004, 43628, 330068, 518324, 1, 2026, 143244, 1756878, 5300418, 2620708, 1, 4072, 457536, 8641800, 43235304, 55717312, 1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572
Offset: 0

Views

Author

Alois P. Heinz, Nov 01 2018

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1;
  1,     2;
  1,     8;
  1,    22,      22;
  1,    52,     172;
  1,   114,     856,       604;
  1,   240,    3488,      7296;
  1,   494,   12746,     54746,      31238;
  1,  1004,   43628,    330068,     518324;
  1,  2026,  143244,   1756878,    5300418,    2620708;
  1,  4072,  457536,   8641800,   43235304,   55717312;
  1,  8166, 1434318,  40298572,  309074508,  728888188,  325024572;
  1, 16356, 4438540, 180969752, 2026885824, 7589067592, 8460090160;
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A005803 (for n>0), A321268, A321269.
Row sums give A000246.
T(2n+1,n) gives A177042.
T(2n+2,n) gives A303285(n+1).

Programs

  • Maple
    b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, 1/x,
           add(expand(x*b(u-j, o-1+j, c-1)), j=1..u)+
           add(b(u+j-1, o-j, c+1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(`if`(n=0, 1, b(n, 0, 1))):
    seq(T(n), n=0..14);
  • Mathematica
    b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, 1/x, Sum[Expand[ x*b[u - j, o - 1 + j, c - 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, b[n, 0, 1]]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 08 2018, after Alois P. Heinz *)

A262135 Number of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= 10.

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823275, 108056024, 1404728312, 18261451790, 273921776850, 4108787293579, 69849383990843, 1187387325581683, 22560359186051977, 428591632052426778, 9000424273100962338, 188954690005716285164
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2015

Keywords

Crossrefs

Column k=10 of A262124.

Formula

a(n) = A262124(n,10).
Previous Showing 11-15 of 15 results.