cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 70 results. Next

A265367 Permutation of nonnegative integers: a(n) = A264974(A263272(A263273(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 19, 6, 5, 16, 9, 10, 55, 12, 13, 58, 57, 46, 49, 18, 7, 20, 15, 14, 17, 48, 43, 52, 27, 28, 163, 30, 37, 172, 165, 136, 145, 36, 31, 166, 39, 40, 175, 174, 139, 148, 171, 22, 181, 138, 127, 154, 147, 130, 157, 54, 11, 56, 21, 34, 169, 60, 47, 142, 45, 8, 59, 42, 41, 50, 51, 44, 53, 144, 25, 178, 129, 124, 151, 156, 133, 160, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutations obtained from its bisection (A263272) and quadrisection (A264974), in that order from right to left.

Crossrefs

Programs

Formula

a(n) = A264974(A263272(A263273(n))).
As a composition of other related permutations:
a(n) = A264974(A265351(n)).
a(n) = A264975(A263273(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).

A265368 Permutation of nonnegative integers: a(n) = A263273(A263272(A264974(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 19, 64, 9, 10, 55, 12, 13, 22, 21, 8, 23, 18, 5, 20, 57, 46, 199, 192, 73, 208, 27, 28, 163, 30, 37, 190, 165, 58, 193, 36, 31, 166, 39, 40, 67, 66, 25, 70, 63, 16, 61, 24, 17, 68, 69, 26, 71, 54, 11, 56, 15, 14, 65, 60, 181, 586, 171, 100, 505, 138, 127, 604, 597, 226, 631, 576, 145, 550, 219, 154, 613, 624, 235, 640, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutations obtained from its bisection (A263272) and quadrisection (A264974), in that order from left to right.

Crossrefs

Programs

Formula

a(n) = A263273(A263272(A264974(n))).
As a composition of other related permutations:
a(n) = A265352(A264974(n)).
a(n) = A263273(A264976(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).

A265895 Square array: A(row,col) = A263273(A265345(row,col)) = 2^row * A263273(A265341(col)).

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 9, 14, 20, 24, 16, 15, 18, 28, 40, 48, 32, 13, 30, 36, 56, 80, 96, 64, 11, 26, 60, 72, 112, 160, 192, 128, 17, 22, 52, 120, 144, 224, 320, 384, 256, 19, 34, 44, 104, 240, 288, 448, 640, 768, 512, 21, 38, 68, 88, 208, 480, 576, 896, 1280, 1536, 1024, 39, 42, 76, 136, 176, 416, 960, 1152, 1792, 2560, 3072, 2048
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array A(row,col) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
Shares with arrays A135764, A253551 and A254053 the property that odd terms are on the top row and when going downward in each column, terms grow by doubling.

Examples

			The top left corner of the array:
    1,   3,    5,    7,    9,   15,   13,   11,   17,   19,   21,   39,
    2,   6,   10,   14,   18,   30,   26,   22,   34,   38,   42,   78,
    4,  12,   20,   28,   36,   60,   52,   44,   68,   76,   84,  156,
    8,  24,   40,   56,   72,  120,  104,   88,  136,  152,  168,  312,
   16,  48,   80,  112,  144,  240,  208,  176,  272,  304,  336,  624,
   32,  96,  160,  224,  288,  480,  416,  352,  544,  608,  672, 1248,
   64, 192,  320,  448,  576,  960,  832,  704, 1088, 1216, 1344, 2496,
  128, 384,  640,  896, 1152, 1920, 1664, 1408, 2176, 2432, 2688, 4992,
  256, 768, 1280, 1792, 2304, 3840, 3328, 2816, 4352, 4864, 5376, 9984,
...
		

Crossrefs

Inverse permutation: A265896.
The top row: 1+(2*A263273(n)).
Differs from A135764 for the first time at n=16, where a(16) = 15, while A135764(16) = 11.

Formula

A(row,col) = A263273(A265345(row,col)).
A(row,col) = 2^row * A263273(A265341(col)).

A265902 Self-inverse permutation of nonnegative integers: a(n) = A263273(A263272(A263273(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 19, 6, 7, 8, 9, 10, 55, 12, 13, 58, 57, 64, 73, 18, 5, 20, 21, 22, 25, 24, 23, 26, 27, 28, 163, 30, 37, 172, 165, 190, 217, 36, 31, 166, 39, 40, 175, 174, 193, 220, 171, 46, 181, 192, 199, 226, 219, 208, 235, 54, 11, 56, 15, 14, 59, 60, 65, 74, 63, 16, 61, 66, 67, 76, 75, 70
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A263273(A263272(A263273(n))).
As a composition of related permutations:
a(n) = A263273(A265351(n)).
a(n) = A265352(A263273(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A266189 Self-inverse permutation of nonnegative integers: a(n) = A263273(A264985(A263273(n))).

Original entry on oeis.org

0, 1, 3, 2, 4, 10, 6, 9, 12, 7, 5, 11, 8, 13, 37, 24, 28, 31, 21, 19, 57, 18, 27, 30, 15, 36, 39, 22, 16, 34, 23, 17, 35, 69, 29, 32, 25, 14, 38, 26, 40, 118, 78, 109, 112, 75, 46, 100, 72, 82, 91, 51, 85, 94, 66, 64, 192, 20, 73, 219, 60, 171, 138, 63, 55, 165, 54, 81, 84, 33, 90, 111, 48, 58, 174, 45, 108, 93, 42, 117, 120, 67, 49
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2016

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; s = Select[f /@ Range@ 5000, OddQ]; t = Table[(s[[n + 1]] - 1)/2, {n, 0, 1000}]; Table[f@ t[[f@ n + 1]], {n, 0, 82}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a264985(n): return (a263273(2*n + 1) - 1)/2
    def a(n): return a263273(a264985(a263273(n))) # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A266189 n) (A263273 (A264985 (A263273 n))))
    

Formula

a(n) = A263273(A264985(A263273(n))).
As a composition of related permutations:
a(n) = A263273(A265353(n)).
a(n) = A265354(A263273(n)).

A331173 a(n) = min(n, A263273(n)), where A263273 is bijective base-3 reverse.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 11, 20, 15, 14, 23, 24, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 31, 38, 39, 40, 41, 42, 43, 44, 45, 34, 47, 48, 43, 50, 51, 52, 53, 54, 29, 56, 33, 38, 59, 60, 47, 62, 45, 32, 59, 42, 41, 68, 69, 50, 71, 72, 35, 62, 51, 44, 71, 78, 53, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2020

Keywords

Comments

For all i, j:
a(i) = a(j) => A290094(i) = A290094(j).
For all i, j > 0:
a(i) = a(j) => A007949(i) = A007949(j).

Crossrefs

Programs

A365803 Dirichlet inverse of bijective base-3 reverse of n (A263273).

Original entry on oeis.org

1, -2, -3, 0, -7, 6, -5, 0, 0, 18, -19, 0, -13, -2, 21, 0, -25, 0, -11, -8, 15, 62, -23, 0, 32, 26, 0, 40, -55, -54, -37, -32, 57, 54, -3, 0, -31, -14, 39, 0, -67, 6, -49, -96, 0, 58, -61, 0, -18, -156, 75, 0, -79, 0, 237, -32, 33, 182, -65, 24, -47, 74, 0, 160, 123, -186, -41, 16, 69, 230, -77, 0, -35, 62, -96, 144
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2023

Keywords

Crossrefs

Cf. A263273, A323239 (parity of terms), A365804.
Cf. also A365711.

Programs

  • PARI
    A030102(n) = { my(r=[n%3]); while(0A263273 = n -> if(!n,n,A030102(n/(3^valuation(n,3))) * (3^valuation(n, 3)));
    memoA365803 = Map();
    A365803(n) = if(1==n,1,my(v); if(mapisdefined(memoA365803,n,&v), v, v = -sumdiv(n,d,if(dA263273(n/d)*A365803(d),0)); mapput(memoA365803,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA263273(n/d) * a(d).

A365804 Sum of bijective base-3 reverse of n (A263273) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 12, 0, 8, 9, 28, 0, 12, 0, 20, 42, 16, 0, 18, 0, 12, 30, 76, 0, 24, 49, 52, 27, 68, 0, -24, 0, 32, 114, 100, 70, 36, 0, 44, 78, 40, 0, 72, 0, -20, 63, 92, 0, 48, 25, -86, 150, 52, 0, 54, 266, 24, 66, 220, 0, 84, 0, 148, 45, 192, 182, -144, 0, 84, 138, 280, 0, 72, 0, 124, -45, 188, 190, 0, 0, 80, 81
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2023

Keywords

Crossrefs

Cf. also A365712.

Programs

Formula

a(n) = A263273(n) + A365803(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A263273(d) * A365803(n/d).

A265896 Inverse permutation to A265895: a(n) = A265346(A263273(n)).

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 7, 10, 11, 8, 29, 9, 22, 12, 16, 15, 37, 17, 46, 13, 56, 38, 191, 14, 79, 30, 92, 18, 254, 23, 232, 21, 137, 47, 326, 24, 172, 57, 67, 19, 211, 68, 121, 48, 106, 212, 277, 20, 301, 93, 154, 39, 352, 107, 379, 25, 407, 278, 1541, 31, 466, 255, 704, 28, 2081, 155, 1654, 58, 1082, 353, 2702, 32, 667, 192, 497, 69, 1712, 80, 781, 26, 821
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Crossrefs

Inverse permutation of A265895.
Cf. A263273, A265346 (cf. the scatter plot).

Programs

Formula

a(n) = A265346(A263273(n)).

A331303 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = min(n, A263273(n)), and A263273 is bijective base-3 reverse.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 11, 19, 15, 14, 20, 21, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 27, 33, 34, 35, 36, 37, 38, 39, 40, 30, 41, 42, 38, 43, 44, 45, 46, 47, 25, 48, 29, 33, 49, 50, 41, 51, 40, 28, 49, 37, 36, 52, 53, 43, 54, 55, 31, 51, 44, 39, 54, 56, 46, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 0

Views

Author

Antti Karttunen, Jan 18 2020

Keywords

Comments

Restricted growth sequence transform of A331173. See comments in that sequence.

Crossrefs

Cf. also A331300.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A030102(n) = { my(r=[n%3]); while(0A263273 = n -> if(!n,n,A030102(n/(3^valuation(n,3))) * (3^valuation(n, 3)));
    A331173(n) = min(n, A263273(n));
    v331303 = rgs_transform(vector(1+up_to,n,A331173(n-1)));
    A331303(n) = v331303[1+n];
Previous Showing 31-40 of 70 results. Next