cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A293254 Expansion of Product_{k>=1} (1 + x^k - x^(k^2)).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 2, 2, 2, 3, 4, 4, 6, 7, 8, 9, 9, 14, 15, 17, 22, 23, 27, 33, 36, 43, 48, 56, 64, 72, 84, 94, 109, 124, 136, 157, 178, 197, 225, 253, 286, 319, 358, 401, 451, 500, 559, 628, 694, 774, 863, 958, 1066, 1181, 1310, 1449, 1605, 1778, 1957, 2170
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^k-x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]

A319668 Expansion of Product_{k>=1} (1 - x^k - x^(2*k)).

Original entry on oeis.org

1, -1, -2, 0, 0, 3, 1, 3, 1, -2, 0, -3, -6, -4, 1, -8, 1, 2, 5, 5, 4, 9, 13, 7, 3, 1, 3, 7, -16, -9, -17, -13, -21, -5, -25, -33, -3, -3, -9, 22, -6, 11, 29, 29, 57, 37, 40, 31, 58, 18, 35, 40, 37, -24, -36, -34, -29, -60, -54, -98, -74, -124, -113, -156, -71, -35, -140, -46, -16, -61, -25
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul((1-x^k-x^(2*k)),k=1..100),x=0,71): seq(coeff(a,x,n),n=0..70); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 - x^k - x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Exp[Sum[Sum[EulerPhi[j] Log[1 - x^(j k) (1 + x^(j k))]/(j k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[Sum[EulerPhi[d/j] (Fibonacci[j - 1] + Fibonacci[j + 1]), {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 70}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} phi(j)*log(1 - x^(j*k)*(1 + x^(j*k)))/(j*k)), where phi = Euler totient function (A000010).
Previous Showing 11-12 of 12 results.