cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A120815 Number of permutations of length n with exactly 7 occurrences of the pattern 2-13.

Original entry on oeis.org

42, 1664, 33338, 468200, 5253864, 50442128, 431645370, 3380738400, 24682378500, 170201240352, 1119398566704, 7074531999584, 43215257135312, 256343213520000, 1482127305153560, 8378542979807616, 46428426576857886
Offset: 7

Views

Author

Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006; definition corrected Feb 08 2008

Keywords

References

  • R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
  • Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.

Crossrefs

Formula

a(n) = (n+5)*(40320 + 67824*n - 20180*n^2 - 7556*n^3 - 5*n^4 + 211*n^5 + 25*n^6 + n^7)*binomial(2*n, n-7)/(5040*(n+8)*(n+9)).
G.f.: x^7*C^15*(132 + 16516*C - 92666*C^2 + 215944*C^3 - 281094*C^4 + 225628*C^5 - 110922*C^6 + 25360*C^7 + 7066*C^8 - 9364*C^9 + 4622*C^10 - 1440*C^11 + 294*C^12 - 36*C^13 + 2*C^14)/(2-C)^13, where C=(1-sqrt(1-4*x))/(2*x) is the Catalan function.

A264496 Number of permutations of [n] with exactly nine (possibly overlapping) occurrences of the generalized pattern 13-2.

Original entry on oeis.org

1, 256, 11115, 258564, 4235959, 55145400, 609428105, 5954337792, 52838734860, 433992926048, 3345094317796, 24447556164496, 170782982829160, 1147577406468288, 7455096381483206, 47017233051466444, 288854847620573814, 1733658007070671968, 10189610103251200265
Offset: 7

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Crossrefs

Column k=9 of A263776.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
           b(u-j, o+j-1), j=1..u) +add(convert(series(
           b(u+j-1, o-j)*x^(j-1), x, 10),polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 9):
    seq(a(n), n=7..25);

A264497 Number of permutations of [n] with exactly ten (possibly overlapping) occurrences of the generalized pattern 13-2.

Original entry on oeis.org

74, 5343, 166144, 3342042, 51052432, 643569953, 7034981562, 68865924682, 617271459112, 5148104341380, 40431758240544, 301784671671496, 2156289904582398, 14834095711273034, 98718321568669660, 637965526671540768, 4016617646502383422, 24704067590177063445
Offset: 8

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Crossrefs

Column k=10 of A263776.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
           b(u-j, o+j-1), j=1..u) +add(convert(series(
           b(u+j-1, o-j)*x^(j-1), x, 11),polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 10):
    seq(a(n), n=8..25);

A287328 Number of permutations of [n] with exactly n (possibly overlapping) occurrences of the generalized pattern 13-2 (alternatively: 2-13, 2-31, or 31-2).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 2, 42, 716, 11115, 166144, 2440438, 35573362, 517145226, 7517489564, 109427233994, 1596263948916, 23344423478564, 342325226476816, 5033781463313268, 74223067319020872, 1097343555359525542, 16265399526715750734, 241690082996256941332
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2017

Keywords

Comments

Also number of permutations of [n] with n nestings; also number of permutations of [n] with n crossings.

Crossrefs

Main diagonal of A263776.

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
           add(expand(b(u+j-1, o-j)*x^(j-1)), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1], {j, 1, u}] + Sum[Expand[b[u + j - 1, o - j]*x^(j - 1)], {j, 1, o}]];
    a[n_] := Coefficient[b[n, 0], x, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 06 2023, after Alois P. Heinz *)

Formula

a(n) = A263776(n,n).
Previous Showing 11-14 of 14 results.