A291132
Number of defective parking functions of length n and defect six.
Original entry on oeis.org
1, 303, 34660, 2743112, 181875244, 11023248678, 639875755364, 36555471741284, 2090131479753756, 120898503338385149, 7124218746544184628, 429662666436736162636, 26601747798152634836236, 1694092238645618305809580, 111106187207006959809867012
Offset: 7
-
S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):
a:= n-> S(n, 6)-S(n, 7):
seq(a(n), n=7..23);
-
S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];
a[n_] := S[n, 6] - S[n, 7];
Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Feb 24 2019, from Maple *)
A291133
Number of defective parking functions of length n and defect seven.
Original entry on oeis.org
1, 574, 96620, 10358998, 886044810, 66943181150, 4719570364004, 320771944968342, 21454694483447459, 1431385710008667470, 96133394595460111056, 6540549310477955461846, 452777288307033641080180, 31990399760398854681388158, 2311790354938282481939931160
Offset: 8
-
S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):
a:= n-> S(n, 7)-S(n, 8):
seq(a(n), n=8..23);
-
S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];
a[n_] := S[n, 7] - S[n, 8];
Table[a[n], {n, 8, 23}] (* Jean-François Alcover, Feb 24 2019, from Maple *)
A291134
Number of defective parking functions of length n and defect eight.
Original entry on oeis.org
1, 1103, 269512, 38643849, 4218834608, 393933602129, 33499946915016, 2693983725947891, 209859823775671984, 16093162912317174422, 1228462028909579534968, 94081283153407041089350, 7269699339591280955315232, 569088494101518607733459806
Offset: 9
-
S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):
a:= n-> S(n, 8)-S(n, 9):
seq(a(n), n=9..23);
-
S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];
a[n_] := S[n, 8] - S[n, 9];
Table[a[n], {n, 9, 23}] (* Jean-François Alcover, Feb 24 2019, from Maple *)
A291135
Number of defective parking functions of length n and defect nine.
Original entry on oeis.org
1, 2146, 754943, 143336610, 19795924787, 2267392009178, 231141766226605, 21881366451890002, 1976997422623843358, 173666031731576614842, 15025473411620865716938, 1292364106829281911023554, 111260031164008673095102874, 9635674549219284395173044506
Offset: 10
-
S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):
a:= n-> S(n, 9)-S(n, 10):
seq(a(n), n=10..23);
-
S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];
a[n_] := S[n, 9] - S[n, 10];
Table[a[n], {n, 10, 23}] (* Jean-François Alcover, Feb 24 2019, from Maple *)
A291136
Number of defective parking functions of length n and defect ten.
Original entry on oeis.org
1, 4215, 2127828, 530926606, 92071525556, 12851428617547, 1561750852160556, 173226805226723844, 18081637592017744356, 1813499364725872444178, 177350996523515552397628, 17092810524840161845093436, 1636375630004710170560408532, 156537967540558397590739941650
Offset: 11
-
S:= (n, k)-> add(binomial(n, i)*k*(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k):
a:= n-> S(n, 10)-S(n, 11):
seq(a(n), n=11..23);
-
S[n_, k_] := Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}];
a[n_] := S[n, 10] - S[n, 11];
Table[a[n], {n, 11, 23}] (* Jean-François Alcover, Feb 24 2019, from Maple *)
A365623
T(n,k) is the number of parking functions of length n with cars parking at most k spots away from their preferred spot; square array T(n,k), n>=0, k>=0, read by downward antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 3, 13, 24, 1, 1, 3, 16, 75, 120, 1, 1, 3, 16, 109, 541, 720, 1, 1, 3, 16, 125, 918, 4683, 5040, 1, 1, 3, 16, 125, 1171, 9277, 47293, 40320, 1, 1, 3, 16, 125, 1296, 12965, 109438, 545835, 362880, 1, 1, 3, 16, 125, 1296, 15511, 166836, 1475691, 7087261, 3628800
Offset: 0
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 3, 3, 3, 3, 3, ...
6, 13, 16, 16, 16, 16, 16, ...
24, 75, 109, 125, 125, 125, 125, ...
120, 541, 918, 1171, 1296, 1296, 1296, ...
720, 4683, 9277, 12965, 15511, 16807, 16807, ...
...
-
T:= proc(n, k) option remember; `if`(n=0, 1, add(min(i+1, k+1)*
binomial(n-1, i)*T(i, k)*T(n-1-i, k), i=0..n-1))
end:
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Sep 13 2023