cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A267108 a(n) = A000120(A267111(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 2, 3, 3, 2, 1, 2, 3, 4, 5, 2, 3, 4, 3, 4, 4, 2, 3, 3, 3, 2, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5, 2, 3, 4, 3, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 2, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 3, 4, 5, 6, 4, 5, 6, 5, 6, 6, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5, 3, 4, 5, 4, 5, 5, 4, 5, 5, 5, 2, 3, 4, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2016

Keywords

Crossrefs

Formula

a(1) = 1; for n > 1, if A265332(n) = 1 [when n is one of the terms of A088359], a(n) = 1 + a(A004001(n)-1), otherwise a(n) = a(n-A004001(n)).
a(n) = A000120(A267111(n)).
Other identities. For all n >= 1:
a(n) = A070939(n) - A267109(n).

A267109 a(n) = A080791(A267111(n)).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 0, 2, 1, 1, 2, 4, 3, 2, 1, 0, 3, 2, 1, 2, 1, 1, 3, 2, 2, 2, 3, 5, 4, 3, 2, 1, 0, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 4, 3, 3, 3, 3, 4, 6, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 5, 4, 3, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2016

Keywords

Crossrefs

Formula

a(1) = 0; for n > 1, if A265332(n) = 1 [when n is one of the terms of A088359], a(n) = a(A004001(n)-1), otherwise 1 + a(n) = a(n-A004001(n)).
a(n) = A080791(A267111(n)).
Other identities. For all n >= 1:
a(n) = A070939(n) - A267108(n).

A267102 Inverse permutation to A265901.

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 5, 7, 15, 21, 28, 9, 36, 14, 8, 11, 45, 55, 66, 78, 20, 91, 105, 27, 120, 35, 13, 136, 44, 19, 12, 16, 153, 171, 190, 210, 231, 54, 253, 276, 300, 65, 325, 351, 77, 378, 90, 26, 406, 435, 104, 465, 119, 34, 496, 135, 43, 18, 528, 152, 53, 25, 17, 22, 561, 595, 630, 666, 703, 741, 170, 780, 820
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2016

Keywords

Crossrefs

Inverse: A265901.

Programs

  • Scheme
    (define (A267102 n) (let ((col (A265332 n)) (row (A162598 n))) (* (/ 1 2) (- (expt (+ row col) 2) row col col col -2))))

Formula

a(n) = (1/2) * ((c+r)^2 - r - 3*c + 2), where c = A265332(n), and r = A162598(n).

A267104 Inverse permutation to A265903.

Original entry on oeis.org

1, 3, 2, 6, 4, 7, 5, 10, 11, 16, 22, 8, 29, 12, 9, 15, 37, 46, 56, 67, 17, 79, 92, 23, 106, 30, 13, 121, 38, 18, 14, 21, 137, 154, 172, 191, 211, 47, 232, 254, 277, 57, 301, 326, 68, 352, 80, 24, 379, 407, 93, 436, 107, 31, 466, 122, 39, 19, 497, 138, 48, 25, 20, 28, 529, 562, 596, 631, 667, 704, 155, 742, 781, 821
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2016

Keywords

Crossrefs

Inverse: A265903.

Programs

  • Scheme
    (define (A267104 n) (let ((col (A162598 n)) (row (A265332 n))) (* (/ 1 2) (- (expt (+ row col) 2) row col col col -2))))

Formula

a(n) = (1/2) * ((c+r)^2 - r - 3*c + 2), where c = A162598(n), and r = A265332(n).
Previous Showing 11-14 of 14 results.