cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A359927 E.g.f.: lim_{N->oo} [ Sum_{n>=0} (N^2 + 3*N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 7, 112, 2965, 111856, 5528419, 339433984, 24965493865, 2142654088960, 210377086601311, 23269631260880896, 2864038963868253373, 388330717110688399360, 57521524729462484086075, 9242821569458332441378816, 1601434996324769244061560529
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2023

Keywords

Comments

Related limits:
(C1) exp(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + n)^n * (x/N)^n/n! ]^(1/N).
(C2) W(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n)^n * (x/N)^n/n! ]^(1/N), where W(x) = LambertW(-x)/(-x).

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 112*x^3/3! + 2965*x^4/4! + 111856*x^5/5! + 5528419*x^6/6! + 339433984*x^7/7! + 24965493865*x^8/8! + 2142654088960*x^9/9! + 210377086601311*x^10/10! + 23269631260880896*x^11/11! + 2864038963868253373*x^12/12! + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N^2+3*N+2)*(x/N) + (N^2+3*2*N+2*2^2)^2*(x/N)^2/2! + (N^2+3*3*N+2*3^2)^3*(x/N)^3/3! + (N^2+3*4*N+2*4^2)^4*(x/N)^4/4! + (N^2+3*5*N+2*5^2)^5*(x/N)^5/5! + (N^2+3*6*N+2*6^2)^6*(x/N)^6/6! + ...]^(1/N).
RELATED SERIES.
The logarithm of the g.f. A(x) begins:
(a) log(A(x)) = x + 6*x^2/2! + 93*x^3/3! + 2448*x^4/4! + 92505*x^5/5! + 4589568*x^6/6! + 283008621*x^7/7! + 20903023872*x^8/8! + ... + A359928(n)*x^n/n! + ...
where A359928(n) = [x^n*y^(n+1)/n!] (1/2) * log( Sum_{n>=0} (n^2 + 3*n*y + 2*y^2)^n * x^n/n! );
that is, the coefficient of x^n/n! in the logarithm of e.g.f A(x) equals the coefficient of y^(n+1)*x^n/n!, n >= 1, in the series given by
(b) (1/2) * log( Sum_{n>=0} (n^2 + 3*n*y + 2*y^2)^n * x^n/n! ) = x*(y^2 + 3/2*y + 1/2) + x^2/2!*(6*y^3 + 39/2*y^2 + 21*y + 15/2) + x^3/3!*(93*y^4 + 999/2*y^3 + 2055/2*y^2 + 1917/2*y + 683/2) + x^4/4!*(2448*y^5 + 19119*y^4 + 61704*y^3 + 102742*y^2 + 88080*y + 31019) + x^5/5!*(92505*y^6 + 1948347/2*y^5 + 8887325/2*y^4 + 11224575*y^3 + 16525750*y^2 + 26820135/2*y + 9342629/2) + x^6/6!*(4589568*y^7 + 61994772*y^6 + 374546664*y^5 + 1310466240*y^4 + 2862046080*y^3 + 3891543876*y^2 + 3041064504*y + 1050241608) + ...
		

Crossrefs

Programs

  • PARI
    /* Using formula for the logarithm of g.f. A(x) */
    {L(n) = (1/2) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^m*(m + 2*y)^m *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
    {a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* Using limit formula */
    \p100
    P(n) = sum(k=0, 31, ((n + k)*(n + 2*k))^k * x^k/k! +O(x^31))
    Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^100) )*1.) )

Formula

E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! may be defined by the following.
(1) A(x) = lim_{N->oo} [ Sum_{n>=0} (N + n)^n*(N + 2*n)^n * (x/N)^n/n! ]^(1/N).
(2) A(x) = exp( Sum_{n>=0} A359928(n)*x^n/n! ), where A359928(n) = (1/2) * [x^n*y^(n+1)/n!] log( Sum_{n>=0} (n + y)^n*(n + 2*y)^n *x^n/n! ).
a(n) ~ c * n! * d^n / n^(5/2), where d = 12.7029497597456784744445675253711147535742245945208995646... and c = 0.17380315134029681101563539591890111670852050181568... - Vaclav Kotesovec, Mar 14 2023

A359917 E.g.f.: lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 3, 28, 413, 9216, 268327, 9831424, 432251577, 22259307520, 1313366140331, 87431498993664, 6482838033725077, 529958491541291008, 47356678577690489295, 4592761099982656823296, 480465410003489098874993, 53933291626260492656050176, 6466413087139041540884403667
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2023

Keywords

Comments

Related limits:
(C1) exp(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + n)^n * (x/N)^n/n! ]^(1/N).
(C2) W(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n)^n * (x/N)^n/n! ]^(1/N), where W(x) = LambertW(-x)/(-x).

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 413*x^4/4! + 9216*x^5/5! + 268327*x^6/6! + 9831424*x^7/7! + 432251577*x^8/8! + 22259307520*x^9/9! + 1313366140331*x^10/10! + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N^2+N+2)*(x/N) + (N^2+2*N+2*2^2)^2*(x/N)^2/2! + (N^2+3*N+2*3^2)^3*(x/N)^3/3! + (N^2+4*N+2*4^2)^4*(x/N)^4/4! + (N^2+5*N+2*5^2)^5*(x/N)^5/5! + (N^2+6*N+2*6^2)^6*(x/N)^6/6! + ...]^(1/N).
RELATED SERIES.
The logarithm of the g.f. A(x) begins:
(a) log(A(x)) = x + 2*x^2/2! + 21*x^3/3! + 304*x^4/4! + 6985*x^5/5! + 205056*x^6/6! + 7607509*x^7/7! + ... + A359918(n)*x^n/n! + ...
where A359918(n) = [x^n*y^(n+1)/n!] (1/2) * log( Sum_{n>=0} (n^2 + n*y + 2*y^2)^n * x^n/n! );
that is, the coefficients in the logarithm of e.g.f A(x) equals the coefficients of y^(n+1)*x^n/n! in the series given by
(b) (1/2) * log( Sum_{n>=0} (n^2 + n*y + 2*y^2)^n * x^n/n! ) = (y^2 + 1/2*y + 1/2)*x + (2*y^3 + 15/2*y^2 + 7*y + 15/2)*x^2/2! + (21*y^4 + 197/2*y^3 + 543/2*y^2 + 639/2*y + 683/2)*x^3/3! + (304*y^5 + 2495*y^4 + 8984*y^3 + 22246*y^2 + 29360*y + 31019)*x^4/4! + (6985*y^6 + 150489/2*y^5 + 817005/2*y^4 + 1335885*y^3 + 3162830*y^2 + 8940045/2*y + 9342629/2)*x^5/5! + (205056*y^7 + 2946228*y^6 + 20587128*y^5 + 94146240*y^4 + 294518400*y^3 + 684700836*y^2 + 1013688168*y + 1050241608)*x^6/6! + ...
		

Crossrefs

Programs

  • PARI
    /* Using formula for the logarithm of g.f. A(x) */
    {L(n) = (1/2) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m^2 + m*y + 2*y^2)^m *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
    {a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* Using limit formula */
    \p100
    P(n) = sum(k=0, 31, (n^2 + n*k + 2*k^2)^k * x^k/k! +O(x^31))
    Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^100) )*1.) )

Formula

E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! may be defined by the following.
(1) A(x) = lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).
(2) A(x) = exp( Sum_{n>=0} A359918(n)*x^n/n! ), where A359918(n) = (1/2) * [x^n*y^(n+1)/n!] log( Sum_{n>=0} (n^2 + n*y + 2*y^2)^n * x^n/n! ).
a(n) ~ c * d^n * n! / n^(5/2), where d = 7.68892218919697462312... and c = 0.155267010681833... - Vaclav Kotesovec, Mar 21 2024

A266488 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(2*n) * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 0, 1, 4, 0, 1, 12, 42, 0, 1, 24, 216, 752, 0, 1, 40, 660, 5440, 19360, 0, 1, 60, 1560, 22320, 178920, 654912, 0, 1, 84, 3150, 68320, 916440, 7316064, 27546736, 0, 1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0, 1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0, 1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.

Examples

			E.g.f. A(x) = 1 + x +
x^2/2! * (1 + 4*y) +
x^3/3! * (1 + 12*y + 42*y^2) +
x^4/4! * (1 + 24*y + 216*y^2 + 752*y^3) +
x^5/5! * (1 + 40*y + 660*y^2 + 5440*y^3 + 19360*y^4) +
x^6/6! * (1 + 60*y + 1560*y^2 + 22320*y^3 + 178920*y^4 + 654912*y^5) +
x^7/7! * (1 + 84*y + 3150*y^2 + 68320*y^3 + 916440*y^4 + 7316064*y^5 + 27546736*y^6) +
x^8/8! * (1 + 112*y + 5712*y^2 + 173600*y^3 + 3432800*y^4 + 44693376*y^5 + 359051392*y^6 + 1388207872*y^7) + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N + y)^2*(x/N) + (N + 2*y)^4*(x/N)^2/2! + (N + 3*y)^6*(x/N)^3/3! + (N + 4*y)^8*(x/N)^4/4! + (N + 5*y)^10*(x/N)^5/5! + (N + 6*y)^12*(x/N)^6/6! +...]^(1/N).
Triangle of coefficients T(n,k) of x^n*y^k/n!, n>=0, k=0..n, begins:
1;
1, 0;
1, 4, 0;
1, 12, 42, 0;
1, 24, 216, 752, 0;
1, 40, 660, 5440, 19360, 0;
1, 60, 1560, 22320, 178920, 654912, 0;
1, 84, 3150, 68320, 916440, 7316064, 27546736, 0;
1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0;
1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0;
1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0;
1, 220, 22770, 1467840, 65659440, 2143842624, 52117998240, 938463651840, 12065358919680, 100649306644480, 415721105434624, 0; ...
		

Crossrefs

Programs

  • PARI
    /* Print the initial rows of this triangle: */
    \p400
    P(n) = sum(k=0, 21, (n + k*y)^(2*k) * (x/n)^k/k! +O(x^21))
    V=Vec( round( serlaplace( P(10^100)^(1/10^100) )*1.) )
    for(n=1,15,print(Vec(V[n]+O(y^n))))
Previous Showing 11-13 of 13 results.