A359927
E.g.f.: lim_{N->oo} [ Sum_{n>=0} (N^2 + 3*N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 7, 112, 2965, 111856, 5528419, 339433984, 24965493865, 2142654088960, 210377086601311, 23269631260880896, 2864038963868253373, 388330717110688399360, 57521524729462484086075, 9242821569458332441378816, 1601434996324769244061560529
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 112*x^3/3! + 2965*x^4/4! + 111856*x^5/5! + 5528419*x^6/6! + 339433984*x^7/7! + 24965493865*x^8/8! + 2142654088960*x^9/9! + 210377086601311*x^10/10! + 23269631260880896*x^11/11! + 2864038963868253373*x^12/12! + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N^2+3*N+2)*(x/N) + (N^2+3*2*N+2*2^2)^2*(x/N)^2/2! + (N^2+3*3*N+2*3^2)^3*(x/N)^3/3! + (N^2+3*4*N+2*4^2)^4*(x/N)^4/4! + (N^2+3*5*N+2*5^2)^5*(x/N)^5/5! + (N^2+3*6*N+2*6^2)^6*(x/N)^6/6! + ...]^(1/N).
RELATED SERIES.
The logarithm of the g.f. A(x) begins:
(a) log(A(x)) = x + 6*x^2/2! + 93*x^3/3! + 2448*x^4/4! + 92505*x^5/5! + 4589568*x^6/6! + 283008621*x^7/7! + 20903023872*x^8/8! + ... + A359928(n)*x^n/n! + ...
where A359928(n) = [x^n*y^(n+1)/n!] (1/2) * log( Sum_{n>=0} (n^2 + 3*n*y + 2*y^2)^n * x^n/n! );
that is, the coefficient of x^n/n! in the logarithm of e.g.f A(x) equals the coefficient of y^(n+1)*x^n/n!, n >= 1, in the series given by
(b) (1/2) * log( Sum_{n>=0} (n^2 + 3*n*y + 2*y^2)^n * x^n/n! ) = x*(y^2 + 3/2*y + 1/2) + x^2/2!*(6*y^3 + 39/2*y^2 + 21*y + 15/2) + x^3/3!*(93*y^4 + 999/2*y^3 + 2055/2*y^2 + 1917/2*y + 683/2) + x^4/4!*(2448*y^5 + 19119*y^4 + 61704*y^3 + 102742*y^2 + 88080*y + 31019) + x^5/5!*(92505*y^6 + 1948347/2*y^5 + 8887325/2*y^4 + 11224575*y^3 + 16525750*y^2 + 26820135/2*y + 9342629/2) + x^6/6!*(4589568*y^7 + 61994772*y^6 + 374546664*y^5 + 1310466240*y^4 + 2862046080*y^3 + 3891543876*y^2 + 3041064504*y + 1050241608) + ...
-
/* Using formula for the logarithm of g.f. A(x) */
{L(n) = (1/2) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^m*(m + 2*y)^m *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
/* Using limit formula */
\p100
P(n) = sum(k=0, 31, ((n + k)*(n + 2*k))^k * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^100) )*1.) )
A359917
E.g.f.: lim_{N->oo} [ Sum_{n>=0} (N^2 + N*n + 2*n^2)^n * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 3, 28, 413, 9216, 268327, 9831424, 432251577, 22259307520, 1313366140331, 87431498993664, 6482838033725077, 529958491541291008, 47356678577690489295, 4592761099982656823296, 480465410003489098874993, 53933291626260492656050176, 6466413087139041540884403667
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 28*x^3/3! + 413*x^4/4! + 9216*x^5/5! + 268327*x^6/6! + 9831424*x^7/7! + 432251577*x^8/8! + 22259307520*x^9/9! + 1313366140331*x^10/10! + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N^2+N+2)*(x/N) + (N^2+2*N+2*2^2)^2*(x/N)^2/2! + (N^2+3*N+2*3^2)^3*(x/N)^3/3! + (N^2+4*N+2*4^2)^4*(x/N)^4/4! + (N^2+5*N+2*5^2)^5*(x/N)^5/5! + (N^2+6*N+2*6^2)^6*(x/N)^6/6! + ...]^(1/N).
RELATED SERIES.
The logarithm of the g.f. A(x) begins:
(a) log(A(x)) = x + 2*x^2/2! + 21*x^3/3! + 304*x^4/4! + 6985*x^5/5! + 205056*x^6/6! + 7607509*x^7/7! + ... + A359918(n)*x^n/n! + ...
where A359918(n) = [x^n*y^(n+1)/n!] (1/2) * log( Sum_{n>=0} (n^2 + n*y + 2*y^2)^n * x^n/n! );
that is, the coefficients in the logarithm of e.g.f A(x) equals the coefficients of y^(n+1)*x^n/n! in the series given by
(b) (1/2) * log( Sum_{n>=0} (n^2 + n*y + 2*y^2)^n * x^n/n! ) = (y^2 + 1/2*y + 1/2)*x + (2*y^3 + 15/2*y^2 + 7*y + 15/2)*x^2/2! + (21*y^4 + 197/2*y^3 + 543/2*y^2 + 639/2*y + 683/2)*x^3/3! + (304*y^5 + 2495*y^4 + 8984*y^3 + 22246*y^2 + 29360*y + 31019)*x^4/4! + (6985*y^6 + 150489/2*y^5 + 817005/2*y^4 + 1335885*y^3 + 3162830*y^2 + 8940045/2*y + 9342629/2)*x^5/5! + (205056*y^7 + 2946228*y^6 + 20587128*y^5 + 94146240*y^4 + 294518400*y^3 + 684700836*y^2 + 1013688168*y + 1050241608)*x^6/6! + ...
-
/* Using formula for the logarithm of g.f. A(x) */
{L(n) = (1/2) * n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m^2 + m*y + 2*y^2)^m *x^m/m! ) +x*O(x^n) ), n, x), n+1, y)}
{a(n) = n! * polcoeff( exp( sum(m=1, n+1, L(m)*x^m/m! ) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
/* Using limit formula */
\p100
P(n) = sum(k=0, 31, (n^2 + n*k + 2*k^2)^k * x^k/k! +O(x^31))
Vec(round( serlaplace( subst(P(10^100)^(1/10^100), x, x/10^100) )*1.) )
A266488
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(2*n) * (x/N)^n/n! ]^(1/N).
Original entry on oeis.org
1, 1, 0, 1, 4, 0, 1, 12, 42, 0, 1, 24, 216, 752, 0, 1, 40, 660, 5440, 19360, 0, 1, 60, 1560, 22320, 178920, 654912, 0, 1, 84, 3150, 68320, 916440, 7316064, 27546736, 0, 1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0, 1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0, 1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0
Offset: 0
E.g.f. A(x) = 1 + x +
x^2/2! * (1 + 4*y) +
x^3/3! * (1 + 12*y + 42*y^2) +
x^4/4! * (1 + 24*y + 216*y^2 + 752*y^3) +
x^5/5! * (1 + 40*y + 660*y^2 + 5440*y^3 + 19360*y^4) +
x^6/6! * (1 + 60*y + 1560*y^2 + 22320*y^3 + 178920*y^4 + 654912*y^5) +
x^7/7! * (1 + 84*y + 3150*y^2 + 68320*y^3 + 916440*y^4 + 7316064*y^5 + 27546736*y^6) +
x^8/8! * (1 + 112*y + 5712*y^2 + 173600*y^3 + 3432800*y^4 + 44693376*y^5 + 359051392*y^6 + 1388207872*y^7) + ...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N + y)^2*(x/N) + (N + 2*y)^4*(x/N)^2/2! + (N + 3*y)^6*(x/N)^3/3! + (N + 4*y)^8*(x/N)^4/4! + (N + 5*y)^10*(x/N)^5/5! + (N + 6*y)^12*(x/N)^6/6! +...]^(1/N).
Triangle of coefficients T(n,k) of x^n*y^k/n!, n>=0, k=0..n, begins:
1;
1, 0;
1, 4, 0;
1, 12, 42, 0;
1, 24, 216, 752, 0;
1, 40, 660, 5440, 19360, 0;
1, 60, 1560, 22320, 178920, 654912, 0;
1, 84, 3150, 68320, 916440, 7316064, 27546736, 0;
1, 112, 5712, 173600, 3432800, 44693376, 359051392, 1388207872, 0;
1, 144, 9576, 387072, 10493280, 197261568, 2536797312, 20605529088, 81621893376, 0;
1, 180, 15120, 782880, 27735120, 702777600, 12845683200, 164732083200, 1355581612800, 5488951731200, 0;
1, 220, 22770, 1467840, 65659440, 2143842624, 52117998240, 938463651840, 12065358919680, 100649306644480, 415721105434624, 0; ...
-
/* Print the initial rows of this triangle: */
\p400
P(n) = sum(k=0, 21, (n + k*y)^(2*k) * (x/n)^k/k! +O(x^21))
V=Vec( round( serlaplace( P(10^100)^(1/10^100) )*1.) )
for(n=1,15,print(Vec(V[n]+O(y^n))))
Comments