cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 505 results. Next

A266582 Numbers k such that (265*10^k - 7)/3 is prime.

Original entry on oeis.org

1, 2, 4, 9, 13, 14, 16, 46, 99, 112, 116, 127, 146, 208, 512, 848, 1132, 2167, 2482, 2666, 3625, 14410, 16567, 21529, 26272, 69554, 69602
Offset: 1

Views

Author

Robert Price, Jul 10 2016

Keywords

Comments

For k > 0, numbers k such that the digits 88 followed by k-1 occurrences of the digit 3 followed by the digit 1 is prime (see Example section).
a(28) > 10^5.

Examples

			4 is in this sequence because (265*10^4 - 7)/3 = 883331 is prime.
Initial terms and associated primes:
a(1) = 1, 881;
a(2) = 2, 8831;
a(3) = 4, 883331l
a(4) = 9, 88333333331;
a(5) = 13, 883333333333331, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(265*10^# - 7)/3] &]
  • PARI
    is(n)=ispseudoprime((265*10^n-7)/3) \\ Charles R Greathouse IV, Jun 13 2017

A267865 Numbers k such that 49*10^k + 1 is prime.

Original entry on oeis.org

1, 4, 5, 7, 9, 10, 18, 19, 34, 52, 71, 180, 238, 331, 370, 576, 925, 994, 1075, 1841, 2460, 2857, 6007, 6193, 10836, 18732, 58708, 72861
Offset: 1

Views

Author

Robert Price, Apr 07 2016

Keywords

Comments

Numbers k such that the digits 49 followed by k-1 occurrences of the digit 0 followed by the digit 1 is prime (see Example section).
a(29) > 10^5.

Examples

			4 is in this sequence because 49*10^4 + 1 = 490001 is prime.
Initial terms and associated primes:
a(1) = 1, 491;
a(2) = 4, 490001;
a(3) = 5, 4900001;
a(4) = 7, 490000001;
a(5) = 9, 49000000001, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[49*10^#+1] &]
  • PARI
    is(n)=ispseudoprime(49*10^n+1) \\ Charles R Greathouse IV, Jun 13 2017

A269797 Numbers k such that (29*10^k + 91)/3 is prime.

Original entry on oeis.org

1, 2, 3, 4, 8, 11, 18, 27, 39, 54, 55, 65, 75, 83, 111, 164, 189, 191, 204, 252, 322, 371, 449, 646, 678, 754, 1641, 5210, 7787, 11691, 13682, 15994, 22356, 29203, 35756, 57834, 64027, 72985, 74276, 104071, 219124
Offset: 1

Views

Author

Robert Price, Mar 05 2016

Keywords

Comments

For k > 1, numbers k such that digit 9 followed by k-2 occurrences of digit 6 followed by the digits 97 is prime (see Example section).
a(42) > 3*10^5.

Examples

			6 is in this sequence because (266*10^n+1)/3 = 88666667 is prime.
Initial terms and associated primes:
a(1) = 1, 127,
a(2) = 2, 997,
a(3) = 3, 9697,
a(4) = 4, 96697,
a(5) = 8, 966666697,
a(6) = 11, 966666666697,
a(7) = 18, 9666666666666666697,
a(8) = 27, 9666666666666666666666666697,
a(9) = 39, 9666666666666666666666666666666666666697, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(29*10^# + 91)/3] &]
  • PARI
    isok(n) = isprime((29*10^n + 91)/3); \\ Michel Marcus, Mar 05 2016

Extensions

a(40) from Robert Price, Apr 12 2020
a(41) from Robert Price, May 31 2023

A270448 Numbers k such that 10^k - 8001 is prime.

Original entry on oeis.org

4, 6, 8, 11, 12, 14, 23, 26, 42, 50, 54, 55, 66, 136, 145, 151, 200, 214, 888, 896, 1674, 2311, 2799, 2836, 2912, 5192, 5907, 8644, 8681, 11914, 18140, 27383, 36549, 57358, 84582, 161253, 167639, 186842, 193230, 204764
Offset: 1

Views

Author

Robert Price, Mar 17 2016

Keywords

Comments

For k > 3, numbers k such that k-4 occurrences of the digit 9 followed by the digits 1999 is prime (see Example section).
a(41) > 3*10^5.

Examples

			4 is in this sequence because 10^4-8001 = 1999 is prime.
Initial terms and associated primes:
a(1) = 4, 1999;
a(2) = 6, 991999;
a(3) = 8, 99991999;
a(4) = 11, 99999991999;
a(5) = 12, 999999991999, etc.
		

Crossrefs

Programs

  • Maple
    isa := n -> isprime(10^n-8001):
    select(isa, [$0..1000]); # Peter Luschny, Jul 22 2019
  • Mathematica
    Select[Range[0, 100000], PrimeQ[10^#-8001 && # > 3] &] (* Corrected by Georg Fischer, Jul 22 2019 *)
  • PARI
    isok(n) = isprime(10^n-8001); \\ Michel Marcus, Mar 18 2016
    
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(10^n-8001), print1(n, ", "))); \\ Altug Alkan, Mar 18 2016

Extensions

a(36)-a(39) from Robert Price, Mar 27 2018
a(40) from Robert Price, May 31 2023

A270738 Numbers k such that 23*10^k - 7 is prime.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 18, 19, 30, 65, 77, 126, 353, 541, 576, 723, 777, 1024, 1194, 1507, 2379, 2615, 4008, 4295, 4495, 4526, 9996, 10348, 10673, 14120, 22350, 70240, 93116, 122070, 136225, 183710, 224232, 234025, 270799
Offset: 1

Views

Author

Robert Price, Mar 22 2016

Keywords

Comments

Numbers k such that the digits 22 followed by k-1 occurrences of the digit 9 followed by the digit 3 is prime (see Example section).
a(40) > 3*10^5.

Examples

			3 is in this sequence because 23*10^3-7 = 22993 is prime.
Initial terms and associated primes:
a(1) = 1, 223;
a(2) = 2, 2293;
a(3) = 3, 22993;
a(4) = 6, 22999993;
a(5) = 8, 2299999993, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[23*10^# - 7] &] (* Corrected by Georg Fischer, Jul 22 2019 *)
  • PARI
    lista(nn) = {for(n=1, nn, if(ispseudoprime(23*10^n - 7), print1(n, ", "))); } \\ Altug Alkan, Mar 22 2016

Extensions

a(34)-a(36) from Robert Price, Feb 25 2020
a(37)-a(39) from Robert Price, May 31 2023

A271107 Numbers k such that 33*10^k + 1 is prime.

Original entry on oeis.org

1, 2, 5, 6, 7, 8, 29, 47, 145, 205, 227, 505, 553, 600, 787, 809, 1305, 1447, 1593, 2285, 4763, 5679, 9133, 12516, 14869, 16536, 33402, 36085, 51933, 56443, 69133
Offset: 1

Views

Author

Robert Price, Mar 30 2016

Keywords

Comments

Numbers k such that the digits 33 followed by k-1 occurrences of the digit 0 followed by the digit 1 is prime (see Example section).
a(32) > 10^5.

Examples

			5 is in this sequence because 33*10^5+1 = 3300001 is prime.
Initial terms and associated primes:
a(1) = 1, 331;
a(2) = 2, 3301;
a(3) = 5, 3300001;
a(4) = 6, 33000001;
a(5) = 7, 330000001;
a(6) = 8, 3300000001, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[33*10^#+1] &]
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(33*10^n+1), print1(n, ", "))); \\ Altug Alkan, Mar 31 2016

A271146 Numbers k such that (16*10^k - 19)/3 is prime.

Original entry on oeis.org

1, 4, 5, 6, 10, 13, 20, 22, 24, 35, 41, 42, 46, 155, 222, 336, 432, 538, 577, 637, 679, 750, 758, 785, 2262, 5436, 6806, 7962, 9757, 16016, 24588, 47918, 59062, 74092, 81896, 85495, 102299, 185978, 190420
Offset: 1

Views

Author

Robert Price, Mar 31 2016

Keywords

Comments

For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 3 followed by the digits 27 is prime (see Example section).
a(40) > 2*10^5.

Examples

			4 is in this sequence because (16*10^4 - 19)/3 = 53327 is prime.
Initial terms and associated primes:
a(1) = 1, 47;
a(2) = 4, 53327;
a(3) = 5, 533327;
a(4) = 6, 5333327;
a(5) = 10, 53333333327;
a(6) = 13, 53333333333327, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(16*10^# - 19)/3] &]
  • PARI
    lista(nn) = {for(n=1, nn, if(ispseudoprime((16*10^n - 19)/3), print1(n, ", ")));} \\ Altug Alkan, Mar 31 2016

Extensions

a(37)-a(39) from Robert Price, Feb 23 2019

A271147 Numbers k such that (28*10^k + 113)/3 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 12, 16, 22, 23, 42, 52, 57, 63, 117, 119, 208, 266, 324, 481, 779, 1244, 1289, 2998, 5522, 5599, 5771, 6820, 12367, 14737, 22612, 30623, 31596, 58956, 59133, 138240, 163709, 250655, 259897
Offset: 1

Views

Author

Robert Price, Mar 31 2016

Keywords

Comments

For k > 1, numbers k such that the digit 9 followed by k-2 occurrences of the digit 3 followed by the digits 71 is prime (see Example section).
a(41) > 3*10^5.

Examples

			3 is in this sequence because (28*10^3+113)/3 = 9371 is prime.
Initial terms and associated primes:
a(1) = 0, 47;
a(2) = 1, 131;
a(3) = 2, 971;
a(4) = 3, 9371;
a(5) = 4, 93371;
a(6) = 6, 9333371, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(28*10^# + 113)/3] &]
  • PARI
    is(n)=ispseudoprime((28*10^n + 113)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(37)-a(38) from Robert Price, Mar 13 2020
a(39)-a(40) from Robert Price, Jun 17 2023

A271340 Numbers k such that (14*10^k + 73)/3 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 10, 15, 19, 32, 54, 68, 114, 148, 227, 238, 286, 405, 789, 857, 1310, 2314, 3613, 4103, 4215, 5135, 6094, 8023, 8718, 16899, 34215, 41989, 81585, 85010, 143097, 165282, 199447
Offset: 1

Views

Author

Robert Price, Apr 05 2016

Keywords

Comments

For k > 1, numbers k such that the digit 4 followed by k-2 occurrences of the digit 6 followed by the digits 91 is prime (see Example section).
a(39) > 2*10^5.

Examples

			3 is in this sequence because (14*10^3 + 73)/3 = 4691 is prime.
Initial terms and associated primes:
a(1) = 0, 29;
a(2) = 1, 71;
a(3) = 2, 491;
a(4) = 3, 4691;
a(5) = 4, 46691;
a(6) = 6, 4666691, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[(14*10^# + 73)/3] &]
  • PARI
    is(n)=ispseudoprime((14*10^n + 73)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(36)-a(38) from Robert Price, Dec 26 2018

A271360 Numbers k such that 5*10^k + 87 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 16, 38, 39, 46, 61, 62, 100, 116, 152, 190, 298, 472, 642, 688, 1676, 1971, 2338, 4389, 4520, 4986, 7765, 9428, 10820, 18984, 19797, 35360, 42146, 168807
Offset: 1

Views

Author

Robert Price, Apr 05 2016

Keywords

Comments

For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 0 followed by the digits 87 is prime (see Example section).
a(34) > 2*10^5.

Examples

			3 is in this sequence because 5*10^3 + 87 = 5087 is prime.
Initial terms and associated primes:
a(1) = 1, 137;
a(2) = 2, 587;
a(3) = 3, 5087;
a(4) = 4, 50087;
a(5) = 6, 5000087, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[5*10^# + 87] &]
  • PARI
    is(n)=ispseudoprime(5*10^n + 87) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(33) from Robert Price, Feb 24 2019
Previous Showing 31-40 of 505 results. Next