cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A269016 Number of 6Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 420, 4952, 91048, 1053432, 14382480, 164351184, 2008761644, 22653710120, 262438771480, 2922424553104, 32858512559296, 361841100434016, 3993863461953940, 43568235211010040, 474957563309125640
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2016

Keywords

Comments

Row 6 of A269011.

Examples

			Some solutions for n=4
..0..0..1..1. .1..0..0..1. .0..1..0..0. .0..0..1..1. .0..1..0..0
..0..0..0..0. .0..0..1..0. .0..1..0..0. .0..0..0..0. .1..0..0..0
..1..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..1..0..0..1. .0..0..1..0. .0..0..1..0. .1..0..0..0. .0..0..0..0
..0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..1..0. .1..0..1..0
..0..0..0..0. .1..0..1..0. .0..1..0..1. .0..0..1..0. .1..0..1..0
		

Crossrefs

Cf. A269011.

Formula

Empirical: a(n) = 8*a(n-1) +160*a(n-2) -980*a(n-3) -9416*a(n-4) +38056*a(n-5) +226410*a(n-6) -670648*a(n-7) -2592568*a(n-8) +5911340*a(n-9) +15294568*a(n-10) -26316136*a(n-11) -50480497*a(n-12) +59619248*a(n-13) +94091288*a(n-14) -64298400*a(n-15) -91176864*a(n-16) +26645760*a(n-17) +36563904*a(n-18) -3642624*a(n-19) -4981824*a(n-20)

A269017 Number of 7Xn binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 1183, 22654, 566656, 10002542, 192100836, 3258530608, 56916559941, 940858829922, 15693717431672, 254647316356204, 4136953520012344, 66194476183413344, 1057401264518371179, 16737766253590304358
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2016

Keywords

Comments

Row 7 of A269011.

Examples

			Some solutions for n=3
..0..1..0. .0..0..1. .0..1..0. .1..1..0. .1..1..0. .0..0..0. .1..0..1
..0..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..0. .0..1..0. .1..0..1
..0..1..0. .1..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..0..0
..1..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .1..0..1. .1..0..0
..0..0..1. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .0..0..1. .0..0..0
..0..0..1. .1..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..0. .0..1..0
..1..0..1. .0..1..0. .1..1..0. .0..0..0. .0..1..0. .1..1..0. .0..0..1
		

Crossrefs

Cf. A269011.

Formula

Empirical: a(n) = 18*a(n-1) +287*a(n-2) -5714*a(n-3) -26548*a(n-4) +662854*a(n-5) +503265*a(n-6) -36588730*a(n-7) +43719737*a(n-8) +1055812740*a(n-9) -2531478280*a(n-10) -16536573196*a(n-11) +55382641489*a(n-12) +144894098686*a(n-13) -653413097167*a(n-14) -674041638674*a(n-15) +4637903423724*a(n-16) +1002070742726*a(n-17) -20672353979137*a(n-18) +5547728650154*a(n-19) +58313438730423*a(n-20) -34583201988384*a(n-21) -101896578743152*a(n-22) +86334749395584*a(n-23) +103754510061648*a(n-24) -115277187600000*a(n-25) -52616533613760*a(n-26) +83474612042112*a(n-27) +5618980228032*a(n-28) -30037873821696*a(n-29) +4537384086528*a(n-30) +4167543840768*a(n-31) -1173876903936*a(n-32)
Previous Showing 11-12 of 12 results.