cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A269572 Maximal period-length associated with binary fractility of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 5, 1, 6, 2, 3, 1, 4, 3, 9, 2, 4, 5, 7, 1, 10, 6, 9, 2, 14, 3, 4, 1, 5, 4, 7, 3, 18, 9, 8, 2, 10, 4, 7, 5, 7, 7, 14, 1, 11, 10, 6, 6, 26, 9, 12, 2, 9, 14, 29, 3, 30, 4, 5, 1, 6, 5, 33, 4, 11, 7, 21, 3, 6, 18, 11, 9, 15, 8, 22, 2, 27
Offset: 2

Views

Author

Clark Kimberling, Mar 01 2016

Keywords

Comments

For each x in (0,1], let 1/2^p(1) + 1/2^p(2) + ... be the infinite binary representation of x. Let d(1) = p(1) and d(i) = p(i) - p(i-1) for i >=2. Call (d(i)) the powerdifference sequence of x, and denote it by D(x). Call m/n and u/v equivalent if every period of D(m/n) is a period of D(u/v). Define the binary fractility of n to be the number of distinct equivalence classes of {m/n: 0 < m < n}. Each class is represented by a minimal period, and a(n) is the length of the longest such period.

Examples

			n        classes          a(n)
2         (1)              1
3         (2)              1
4         (1)              1
5         (1,3)            2
6         (1), (2)         1
7         (1,2), (3)       2
8         (1)              1
9         (1), (1,1,4)     3
10        (1), (1,3)       1
		

Crossrefs

A269989 Odds fractility of n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 3, 6, 6, 5, 6, 7, 6, 8, 7, 5, 8, 8, 8, 10, 10, 10, 10, 11, 5, 13, 11, 9, 15, 13, 11, 14, 15, 10, 16, 15, 11, 15, 18, 14, 18, 18, 10, 23, 17, 14, 18, 15, 16, 25, 20, 10, 20, 24, 15, 25, 23, 16, 27, 27, 14, 23, 24, 21, 26, 27, 25, 26, 29
Offset: 2

Views

Author

Keywords

Comments

In order to define (odds) fractility of an integer n > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1) , x <= r(n), and let L(1) = r(n(1))-r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) < x <= r(n(1)+1) + L(1)r(n), and let L(2) = (r(n(2))-r(r(n)+1))L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ... ), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For n > 1, the r-fractility of n is the number of equivalence classes of sequences NI(m/n) for 0 < m < n. Taking r = (1/1, 1/3, 1/5, 1/7, 1/9, ... ) gives odds fractilily.
binary fractility: A269570
factorial fractility: A269982
harmonic fractility: A270000
primes fractility: A269990

Examples

			NI(1/7) = (4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...)
NI(2/7) = (2,1,1,3,1,1,1,1,1,1,2,1,1,2,2,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,2,1,1,1,19,1,30,1,2,2,1,10,1,1,3,1,...)
NI(3/7) = (1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...)
NI(4/7) = (1,1,14,1,2,3,1,2,1,1,1,1,1,2,1,3,2,1,6,1,1,11,1,1,1,1,1,1,1,12,2,1,1,1,2,3,1,1,1,1,1,6,1,1,1,1,2,3,1,7,...)
NI(5/7) = (1,1,1,14,1,2,3,1,2,1,1,1,1,1,2,1,3,2,1,6,1,1,11,1,1,1,1,1,1,1,12,2,1,1,1,2,3,1,1,1,1,1,6,1,1,1,1,2,3,1,...)
NI(6/7) = (1,1,1,1,2,1,1,11,1,2,1,1,1,1,1,1,1,6,1,7,1,1,1,1,1,1,1,2,1,1,6,1,1,1,194,1,2,7,6,2,1,1,1,1,1,1,3,1,2,1,...);
there are 4 equivalence classes:  {1/7,3/7},{2/7},{4,5},{6},so that a(7) = 4.
		

Crossrefs

A269990 Primes fractility of n.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 9, 6, 10, 10, 10, 12, 12, 11, 12, 15, 7, 14, 15, 12, 17, 16, 13, 17, 15, 13, 18, 18, 16, 18, 23, 16, 20, 21, 14, 22, 23, 19, 23, 22, 20, 27, 26, 16, 24, 26, 21, 28, 27, 20, 29, 32, 18, 30, 33, 27, 35, 33, 27, 29
Offset: 2

Views

Author

Keywords

Comments

In order to define (primes) fractility of an integer n > 1, we first define nested interval sequences. Suppose that r = (r(n)) is a sequence satisfying (i) 1 = r(1) > r(2) > r(3) > ... and (ii) r(n) -> 0. For x in (0,1], let n(1) be the index n such that r(n+1), x <= r(n), and let L(1) = r(n(1)) - r(n(1)+1). Let n(2) be the index n such that r(n(1)+1) < x <= r(n(1)+1) + L(1)r(n), and let L(2) = (r(n(2)) - r(r(n)+1))L(1). Continue inductively to obtain the sequence (n(1), n(2), n(3), ...), the r-nested interval sequence of x.
For fixed r, call x and y equivalent if NI(x) and NI(y) are eventually identical. For n > 1, the r-fractility of n is the number of equivalence classes of sequences NI(m/n) for 0 < m < n. Taking r = (1/2, 1/3, 1/5, 1/7, 1/11, ... ) gives primes fractility.
binary fractility: A269570
factorial fractility: A269982
harmonic fractility: A270000
odds fractility: A269989

Examples

			NI(1/11) = (5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...)
NI(2/11) = (3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...)
NI(3/11) = (2,1,2,1,1,1,1,1,4,1,1,1,1,1,3,2,9,1,1,1,2,1,2,2,2,2,1,1,1,4,1,1,1,1,1,1,1,1,1,1,11,1,2,4,1,4,3,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,...)
NI(4/11) = (1,8,2,4,1,2,1,1,1,1,1,2,1,3,2,1,5,1,1,8,1,4,1,1,1,1,1,1,1,2,3,3,1,3,1,1,1,1,1,5,2,3,2,4,2,1,8,2,1,1,2,2,106,2,3,1,1,1,1,1,1,2,2,6,1,,...)
NI(5/11) = (1,3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...)
NI(6/11) = (1,2,1,1,1,1,1,4,1,1,1,1,1,3,2,9,1,1,1,2,1,2,2,2,2,1,1,1,4,1,1,1,1,1,1,1,1,1,1,11,1,2,4,1,4,3,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,1,...);
NI(7/11) = (1,1,3,1,1,2,1,1,3,1,3,1,1,1,2,2,1,1,1,2,1,1,1,4,4,1,2,10,1,1,1,1,1,1,1,1,1,2,1,1,8,1,1,1,1,1,2,1,2,1,1,1,1,1,2,1,4,1,1,3,1,8,1,1,1,1,1,1,...);
NI(8/11) = (1,1,1,5,3,1,1,1,2,1,3,1,1,1,1,1,2,1,11,1,1,1,1,1,1,1,1,2,1,1,1,2,1,8,1,1,2,3,1,1,1,6,1,2,1,4,1,1,1,1,1,1,34,1,8,1,3,1,1,5,1,1,1,1,1,4,1,...);
NI(9/11) = (1,1,1,1,5,3,1,1,1,2,1,3,1,1,1,1,1,2,1,11,1,1,1,1,1,1,1,1,2,1,1,1,2,1,8,1,1,2,3,1,1,1,6,1,2,1,4,1,1,1,1,1,1,34,1,8,1,3,1,1,5,1,1,1,1,1,4,...);
NI(10/11) = (1,1,1,1,1,2,1,1,1,1,4,3,1,1,1,1,1,1,2,1,1,1,1,6,1,1,1,1,3,2,1,1,1,1,5,7,1,3,2,1,3,1,1,1,1,1,1,1,1,3,1,1,2,2,4,2,1,1,1,1,1,1,1,1,1,1,1,6,...);  there are 6 equivalence classes: {1/11}, {2/11,5/11,7/11},{3,11,6/11},{4/11},{8/11,9/11},{10/11}, so that a(11) = 6.
		

Crossrefs

Previous Showing 11-13 of 13 results.