A269942
Triangle read by rows, the coefficients of the inverse partial P-polynomials.
Original entry on oeis.org
1, 0, -1, 0, -1, 1, 0, -2, 1, 2, -1, 0, -5, 5, -1, 5, -2, -3, 1, 0, -14, 21, -3, -6, 1, 14, -12, 2, -9, 3, 4, -1, 0, -42, 84, -28, -28, 7, 7, -1, 42, -56, 7, 14, -2, -28, 21, -3, 14, -4, -5, 1
Offset: 0
[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-2, 1], [2], [-1]],
[[0], [-5, 5, -1], [5, -2], [-3], [1]],
[[0], [-14, 21, -3, -6, 1], [14, -12, 2], [-9, 3], [4], [-1]],
[[0], [-42,84,-28,-28,7,7,-1],[42,-56,7,14,-2],[-28,21,-3],[14,-4],[-5],[1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805. The column 1 of sublists is A111785 in a different order.
A356652
Triangle read by rows. Numerators of the coefficients of a sequence of rational polynomials r_n(x) with r_n(1) = B(2*n), where B(n) are the Bernoulli numbers.
Original entry on oeis.org
1, 0, 1, 0, 1, -1, 0, 1, -1, 5, 0, 1, -41, 14, -140, 0, 1, -23, 93, -40, 100, 0, 1, -157, 2948, -3652, 7700, -15400, 0, 1, -341, 18759, -1937936, 520520, -280280, 1401400, 0, 1, -1927, 3478, -7384676, 4364360, -1430000, 5605600, -8008000
Offset: 0
The rational triangle R(n, k) begins:
[0] 1;
[1] 0, 1/6;
[2] 0, 1/70, -1/21;
[3] 0, 1/434, -1/31, 5/93;
[4] 0, 1/2286, -41/1905, 14/127, -140/1143;
[5] 0, 1/11242, -23/1533, 93/511, -40/73, 100/219;
[6] 0, 1/53222, -157/14329, 2948/10235, -3652/2047, 7700/2047, -15400/6141;
.
Row sums are: 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, ... (A000367/A002445).
-
# Using function PTrans from A269941.
R_row := n -> seq(coeffs(p), p in PTrans(n, n -> 1/((2*n)*(2*n + 1)),
n -> (2*n)!/(2-2^(2*n)))): seq(seq(numer(r), r in R_row(n)), n = 0..8);
A356653
Triangle read by rows. Denominators of the coefficients of a sequence of rational polynomials r_n(x) with r_n(1) = B(2*n), where B(n) are the Bernoulli numbers.
Original entry on oeis.org
1, 1, 6, 1, 70, 21, 1, 434, 31, 93, 1, 2286, 1905, 127, 1143, 1, 11242, 1533, 511, 73, 219, 1, 53222, 14329, 10235, 2047, 2047, 6141, 1, 245730, 40955, 40955, 368595, 24573, 8191, 73719, 1, 1114078, 294903, 4681, 491505, 42129, 4681, 14043, 42129
Offset: 0
The triangle T(n, k) begins:
[0] 1;
[1] 1, 6;
[2] 1, 70, 21;
[3] 1, 434, 31, 93;
[4] 1, 2286, 1905, 127, 1143;
[5] 1, 11242, 1533, 511, 73, 219;
[6] 1, 53222, 14329, 10235, 2047, 2047, 6141;
-
# Using function PTrans from A269941.
R_row := n -> seq(coeffs(p), p in PTrans(n, n -> 1/((2*n)*(2*n + 1)),
n -> (2*n)!/(2-2^(2*n)))): seq(lprint(seq(denom(r), r in R_row(n))), n=0..9);
A260533
Table of partition coefficients read by rows. The coefficient of a partition p is Product_{j=1..length(p)-1} C(p[j], p[j+1]). Row n lists the coefficients of the partitions of n in the ordering A080577, for n>=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 5, 6, 4, 1, 6, 3, 1, 2, 2, 1, 1, 6, 10, 5, 4, 12, 4, 3, 3, 6, 3, 2, 2, 2, 1, 1, 7, 15, 6, 10, 20, 5, 1, 12, 6, 12, 4, 3, 3, 6, 6, 3, 1, 2, 2, 2, 1
Offset: 1
The signed version of the triangle starts:
[1]
[-1, 1]
[1, -2, 1]
[-1, 3, -1, -2, 1]
[1, -4, 3, 3, -2, -2, 1]
[-1, 5, -6, -4, 1, 6, 3, -1, -2, -2, 1]
Adding adjacent coefficients with equal sign reduces the triangle to the matrix inverse of Pascal's triangle (A130595).
.
The q-polynomials defined by Cigler start:
[0] 1;
[1] 1, q;
[2] 1, 2*q, q^3;
[3] 1, 3*q, q^2+2*q^3, q^6;
[4] 1, 4*q, 3*q^2+3*q^3, 2*q^4+2*q^6, q^10;
[5] 1, 5*q, 6*q^2+4*q^3, q^3+6*q^4+3*q^6, q^6+2*q^7+2*q^10, q^15;
- Johann Cigler, Some elementary remarks on the powers of a partial theta function and corresponding q-analogs of the binomial coefficients, arXiv:2408.14094 [math.NT], 2024.
- Peter Luschny, The P-transform, 2016.
- Peter Luschny, The Partition Transform, A SageMath Jupyter Notebook, GitHub, 2016/2022.
- Marko Riedel, Answer to Question 4943578, Mathematics Stack Exchange, 2024.
- Peter Taylor, Answer to Question 474483, MathOverflow, 2024.
-
with(combstruct): with(ListTools):
PartitionCoefficients := proc(n) local L, iter, p;
iter := iterstructs(Partition(n)): L := []:
while not finished(iter) do
p := Reverse(nextstruct(iter)):
L := [mul(binomial(p[j], p[j+1]), j=1..nops(p)-1), op(L)]
od end:
for n from 1 to 6 do PartitionCoefficients(n) od;
# Alternative, using Cigler's recurrence for the q-polynomials:
C := proc(n, k, q) local j;
if k = 0 then q^binomial(n + 1, 2) elif n = 0 then n^k else
add(q^binomial(j + 1, 2)*C(n - j - 1, k - 1, q), j = 0..n - k) fi end:
p := n -> local k; add(C(n, n - k, q)*x^k, k = 0..n):
row := n -> local k; seq(sort(coeff(expand(p(n)), x, k), [q], ascending), k=0..n):
for n from 0 to 5 do row(n) od; # Peter Luschny, Aug 24 2024
-
PartitionCoeff = lambda p: mul(binomial(p[j], p[j+1]) for j in range(len(p)-1))
PartitionCoefficients = lambda n: [PartitionCoeff(p) for p in Partitions(n)]
for n in (1..7): print(PartitionCoefficients(n))
A269943
Triangle read by rows, T(n,k) = ((-1)^k*(2*n)!/4^k)*P[n,k](1/((2*n-1)*(2*n))) where P is the inverse P-transform, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 6, 0, 16, 60, 90, 0, 288, 1176, 2520, 2520, 0, 9216, 39360, 98280, 151200, 113400, 0, 460800, 2023296, 5504400, 10311840, 12474000, 7484400, 0, 33177600, 148442112, 426666240, 896575680, 1362160800, 1362160800, 681080400
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 2, 6]
[0, 16, 60, 90]
[0, 288, 1176, 2520, 2520]
[0, 9216, 39360, 98280, 151200, 113400]
[0, 460800, 2023296, 5504400, 10311840, 12474000, 7484400]
-
# uses[PtransMatrix from A269941]
eul = lambda n: 1/((2*n-1)*(2*n))
norm = lambda n,k: (-1)^k*factorial(2*n)/4^k
PtransMatrix(7, eul, norm, inverse=True)
A356900
a(n) = P(n, 1/2) where P(n, x) = x^(-n)*Sum_{k=0..n} A241171(n, k)*x^k.
Original entry on oeis.org
1, 1, 8, 154, 5552, 321616, 27325088, 3200979664, 494474723072, 97390246272256, 23820397371219968, 7083386168647642624, 2516691244849530785792, 1052914814802404260765696, 512347915163742179541659648, 286902390859642414913802102784, 183187476890368376930869730803712
Offset: 0
-
a := n -> 2^n*add(A241171(n, k)*(1/2)^k, k = 0..n):
seq(a(n), n = 0..16);
-
# Using function PtransMatrix from A269941.
def E(n, v):
eulr = lambda n: 1 / ((2 * n - 1) * (2 * n))
norm = lambda n, k: (1 / v)^n * factorial(2 * n)
P = PtransMatrix(n, eulr, norm)
return [(-1)^j * sum([v^k * P[j][k] for k in range(j + 1)]) for j in range(n)]
A356900List = lambda n: E(n, -1/2); print(A356900List(17))
# A002105List = lambda n: E(n, 1/2) returns the reduced tangent numbers A002105.
Comments