A271506 Numbers k such that (7*10^k + 179)/3 is prime.
1, 2, 3, 7, 8, 36, 41, 46, 74, 76, 88, 103, 115, 188, 194, 257, 310, 399, 511, 515, 776, 1134, 1404, 6545, 6569, 17600, 22209, 24397, 24842, 46957, 116684, 118607, 131339, 202267
Offset: 1
Examples
3 is in this sequence because (7*10^3 + 179)/3 = 2393 is prime. Initial terms and associated primes: a(1) = 1, 83; a(2) = 2, 293; a(3) = 3, 2393; a(4) = 7, 23333393; a(5) = 8, 233333393. etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 23w93.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(7*10^# + 179)/3] &] Join[{1},Flatten[Position[Table[100*FromDigits[PadRight[{2},n,3]]+93,{n,47000}],?PrimeQ]]+1] (* _Harvey P. Dale, Dec 11 2018 *)
-
PARI
is(n)=ispseudoprime((7*10^n+179)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(31)-a(33) from Robert Price, Sep 01 2018
a(34) from Robert Price, Jun 21 2023
Comments