A272059 Numbers k such that (17*10^k + 13)/3 is prime.
1, 2, 4, 7, 10, 13, 15, 20, 22, 33, 34, 108, 117, 130, 193, 273, 280, 654, 775, 1144, 4014, 4015, 7701, 10356, 11478, 12427, 15075, 44107, 102597, 118635
Offset: 1
Examples
4 is in this sequence because (17*10^4 + 13)/3 = 56671 is prime. Initial terms and associated primes: a(1) = 1, 61; a(2) = 2, 571: a(3) = 4, 56671; a(4) = 7, 56666671; a(5) = 10, 56666666671, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 56w71.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(17*10^# + 13)/3] &]
-
PARI
is(n)=ispseudoprime((17*10^n + 13)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(29)-a(30) from Robert Price, Jan 22 2019
Comments