cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A271748 Number of set partitions of [n] such that 9 is the largest element of the last block.

Original entry on oeis.org

8280, 29874, 117488, 495408, 2215148, 10419024, 51235748, 262138728, 1389893708, 7611839904, 42937377908, 248865777048, 1478955826268, 8994703967184, 55889046456068, 354251342263368, 2287372272350828, 15026157296580864, 100307242528430228, 679694909468957688
Offset: 9

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Crossrefs

Column k=9 of A271466.

Programs

  • PARI
    Vec(2*x^9*(4140 - 134103*x + 1781452*x^2 - 12490518*x^3 + 49449082*x^4 - 109114599*x^5 + 121981810*x^6 - 51819984*x^7 + 20160*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)) + O(x^40)) \\ Colin Barker, Jan 05 2018

Formula

G.f.: 2*x^9 *(20160*x^8 -51819984*x^7 +121981810*x^6 -109114599*x^5 +49449082*x^4 -12490518*x^3 +1781452*x^2 -134103*x +4140) / Product_{j=1..8} (j*x-1).
a(n) = 36*a(n-1) - 546*a(n-2) + 4536*a(n-3) - 22449*a(n-4) + 67284*a(n-5) - 118124*a(n-6) + 109584*a(n-7) - 40320*a(n-8) for n>17. - Colin Barker, Jan 05 2018

A271749 Number of set partitions of [n] such that 10 is the largest element of the last block.

Original entry on oeis.org

42294, 168509, 724731, 3321545, 16075611, 81602489, 432156891, 2377526345, 13540170651, 79588371929, 481614364251, 2993757491945, 19079196017691, 124446430190969, 829494189346011, 5642172217982345, 39113680447384731, 276028057609763609, 1980851149371918171
Offset: 10

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Crossrefs

Column k=10 of A271466.

Programs

  • PARI
    Vec(x^10*(42294 - 1734721*x + 29937606*x^2 - 282366820*x^3 + 1580780268*x^4 - 5329525399*x^5 + 10436766264*x^6 - 10665532740*x^7 + 4242318048*x^8 - 362880*x^9) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)*(1 - 9*x)) + O(x^40)) \\ Colin Barker, Jan 05 2018

Formula

G.f.: x^10 *(362880*x^9 -4242318048*x^8 +10665532740*x^7 -10436766264*x^6 +5329525399*x^5 -1580780268*x^4 +282366820*x^3 -29937606*x^2 +1734721*x -42294) / Product_{j=1..9} (j*x-1).
a(n) = 45*a(n-1) - 870*a(n-2) + 9450*a(n-3) - 63273*a(n-4) + 269325*a(n-5) - 723680*a(n-6) + 1172700*a(n-7) - 1026576*a(n-8) + 362880*a(n-9) for n>19. - Colin Barker, Jan 05 2018

A271752 Number of set partitions of [n+1] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 4, 15, 59, 250, 1145, 5649, 29874, 168509, 1009215, 6391484, 42648083, 298865333, 2193219124, 16811408659, 134289313167, 1115559002906, 9619253991637, 85950089855573, 794567157607386, 7588822028424393, 74783864494826723, 759461721024357540
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(3) = 4: 124|3, 14|23, 14|2|3, 1|24|3.
a(4) = 15: 1235|4, 125|34, 125|3|4, 12|35|4, 135|24, 135|2|4, 13|25|4, 15|234, 15|23|4, 1|235|4, 15|2|34, 1|25|34, 15|2|3|4, 1|25|3|4, 1|2|35|4.
		

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+1,n).

A271753 Number of set partitions of [n+2] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 6, 29, 139, 692, 3627, 20085, 117488, 724731, 4703699, 32043002, 228572813, 1703454469, 13235230990, 106997762361, 898404819935, 7821618182572, 70498093658879, 656892909516441, 6319385054660256, 62688326727955007, 640525850674446471, 6733883466256420010
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(3) = 6: 1245|3, 145|23, 145|2|3, 14|25|3, 15|24|3, 1|245|3.
a(4) = 29: 12356|4, 1256|34, 1256|3|4, 125|36|4, 126|35|4, 12|356|4, 1356|24, 1356|2|4, 135|26|4, 136|25|4, 13|256|4, 156|234, 156|23|4, 15|236|4, 16|235|4, 1|2356|4, 156|2|34, 15|26|34, 16|25|34, 1|256|34, 156|2|3|4, 15|26|3|4, 15|2|36|4, 16|25|3|4, 1|256|3|4, 1|25|36|4, 16|2|35|4, 1|26|35|4, 1|2|356|4.
		

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+2,n).

A271754 Number of set partitions of [n+3] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 10, 63, 365, 2110, 12521, 77133, 495408, 3321545, 23241681, 169563944, 1288195931, 10176462413, 83473288546, 709925146315, 6251616698625, 56926598141054, 535352734428349, 5193455071192121, 51913950093082800, 534160387907563869, 5651905462025615573
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(3) = 10: 12456|3, 1456|23, 1456|2|3, 145|26|3, 146|25|3, 14|256|3, 156|24|3, 15|246|3, 16|245|3, 1|2456|3.
		

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+3,n).

A271755 Number of set partitions of [n+4] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 18, 149, 1039, 6932, 46299, 315597, 2215148, 16075611, 120829511, 941052026, 7592454845, 63417026389, 547926762922, 4892438131137, 45101313988931, 428831073340204, 4201412824028351, 42374784500354529, 439570765566102348, 4685781221854745135
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(3) = 18: 124567|3, 14567|23, 14567|2|3, 1456|27|3, 1457|26|3, 145|267|3, 1467|25|3, 146|257|3, 147|256|3, 14|2567|3, 1567|24|3, 156|247|3, 157|246|3, 15|2467|3, 167|245|3, 16|2457|3, 17|2456|3, 1|24567|3.
		

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+4,n).

A271756 Number of set partitions of [n+5] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 34, 375, 3149, 24190, 181265, 1362669, 10419024, 81602489, 657087105, 5449808144, 46591975883, 410650926413, 3730465450474, 34912477523059, 336408561147777, 3335270965246766, 33998967702498997, 356088425256135353, 3829087912372677696
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(3) = 34: 1245678|3, 145678|23, 145678|2|3, 14567|28|3, 14568|27|3, 1456|278|3, 14578|26|3, 1457|268|3, 1458|267|3, 145|2678|3, 14678|25|3, 1467|258|3, 1468|257|3, 146|2578|3, 1478|256|3, 147|2568|3, 148|2567|3, 14|25678|3, 15678|24|3, 1567|248|3, 1568|247|3, 156|2478|3, 1578|246|3, 157|2468|3, 158|2467|3, 15|24678|3, 1678|245|3, 167|2458|3, 168|2457|3, 16|24578|3, 178|2456|3, 17|24568|3, 18|24567|3, 1|245678|3.
		

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+5,n).

A271757 Number of set partitions of [n+6] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 66, 989, 10039, 88772, 745107, 6164685, 51235748, 432156891, 3720513359, 32799220082, 296618292653, 2754210931669, 26267172307690, 257304094100601, 2588217808077035, 26724983451319372, 283138925329167239, 3076286737105578561, 34258285168272873876
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(3) = 66: 12456789|3, 1456789|23, 1456789|2|3, 145678|29|3, 145679|28|3, 14567|289|3, 145689|27|3, 14568|279|3, 14569|278|3, 1456|2789|3, 145789|26|3, 14578|269|3, 14579|268|3, 1457|2689|3, 14589|267|3, 1458|2679|3, 1459|2678|3, 145|26789|3, 146789|25|3, 14678|259|3, 14679|258|3, 1467|2589|3, 14689|257|3, 1468|2579|3, 1469|2578|3, 146|25789|3, 14789|256|3, 1478|2569|3, 1479|2568|3, 147|25689|3, 1489|2567|3, 148|25679|3, 149|25678|3, 14|256789|3, 156789|24|3, 15678|249|3, 15679|248|3, 1567|2489|3, 15689|247|3, 1568|2479|3, 1569|2478|3, 156|24789|3, 15789|246|3, 1578|2469|3, 1579|2468|3, 157|24689|3, 1589|2467|3, 158|24679|3, 159|24678|3, 15|246789|3, 16789|245|3, 1678|2459|3, 1679|2458|3, 167|24589|3, 1689|2457|3, 168|24579|3, 169|24578|3, 16|245789|3, 1789|2456|3, 178|24569|3, 179|24568|3, 17|245689|3, 189|24567|3, 18|245679|3, 19|245678|3, 1|2456789|3.
		

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+6,n).

A271758 Number of set partitions of [n+7] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 130, 2703, 33365, 340030, 3195161, 29058813, 262138728, 2377526345, 21850848681, 204453592904, 1953119434331, 19080748941293, 190810410926266, 1954112246621755, 20497535793993225, 220206906232309694, 2422414243364061229, 27278730807823249481
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Examples

			a(2) = 1: 13456789|2.
		

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+7,n).

A271759 Number of set partitions of [n+8] such that n is the largest element of the last block.

Original entry on oeis.org

0, 1, 258, 7589, 114799, 1351412, 14220459, 142084077, 1389893708, 13540170651, 132693048551, 1316256290186, 13267436553245, 136223753571349, 1426933424886202, 15263063171191857, 166798075310353571, 1862748034961296684, 21259303294075547951
Offset: 1

Views

Author

Alois P. Heinz, Apr 13 2016

Keywords

Crossrefs

A diagonal of A271466.

Formula

a(n) = A271466(n+8,n).
Previous Showing 11-20 of 22 results. Next