cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A272326 Primes of the form k^4 + 853*k^3 + 2636*k^2 + 3536*k + 1753 in order of increasing nonnegative k.

Original entry on oeis.org

1753, 8779, 26209, 59197, 112921, 192583, 303409, 450649, 639577, 875491, 1163713, 1509589, 1918489, 2395807, 2946961, 3577393, 4292569, 5097979, 5999137, 7001581, 8110873, 10672369, 15456403, 17324929, 19339909, 26321233, 38031841, 48822439, 66193219
Offset: 1

Views

Author

Robert Price, Apr 25 2016

Keywords

Examples

			112921 is in this sequence since 4^4 + 853*4^3 + 2636*4^2 + 3536*4 + 1753 = 256+54592+42176+14144+1753 = 112921 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[n^4 + 853n^3 + 2636n^2 + 3536n + 1753, PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=n^4+853*n^3+2636*n^2+3536*n+1753), print1(p, ", "))); \\ Altug Alkan, Apr 25 2016

A272710 Primes of the form abs((1/4)*(n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) in order of increasing nonnegative n.

Original entry on oeis.org

1705829, 1313701, 991127, 729173, 519643, 355049, 228581, 134077, 65993, 19373, 10181, 26539, 33073, 32687, 27847, 20611, 12659, 5323, 383, 3733, 4259, 1721, 3923, 12547, 23887, 37571, 53149, 70123, 87977, 106207, 124351, 142019, 158923, 174907, 189977
Offset: 1

Views

Author

Robert Price, May 04 2016

Keywords

Examples

			519643 is in this sequence since abs(1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316)) = abs((1024 - 34048 + 430656 - 2534064 + 6881176 - 6823316)/4) = 519643 is prime.
		

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Select[1/4 (n^5 - 133n^4 + 6729n^3 - 158379n^2 + 1720294n - 6823316), PrimeQ[#] &]
Previous Showing 11-12 of 12 results.