cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A273551 Primes of the form 2^(2^n) + 253.

Original entry on oeis.org

257, 269, 509, 65789, 4294967549
Offset: 1

Views

Author

Vincenzo Librandi, Jun 01 2016

Keywords

Comments

Terms given correspond to n = 1, 2, 3, 4, and 5.
Next term >= 2^2^25 + 253. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+253];
    
  • Mathematica
    Select[Table[2^(2^n) + 253, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=1,5, if(ispseudoprime(t=2^2^n+253), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016

A273552 Primes of the form 2^(2^n) + 267.

Original entry on oeis.org

269, 271, 283, 523, 4294967563
Offset: 1

Views

Author

Vincenzo Librandi, Jun 01 2016

Keywords

Comments

Terms given correspond to n = 0, 1, 2, 3, and 5.
Next term >= 2^2^29 + 267. - Charles R Greathouse IV, Jun 08 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+267];
    
  • Mathematica
    Select[Table[2^(2^n) + 267, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0, 5, if(ispseudoprime(t=2^2^n+267), print1(t", "))) \\ Charles R Greathouse IV, Jun 08 2016

A273804 Primes of the form 2^(2^n) + 301.

Original entry on oeis.org

317, 557, 65837, 4294967597, 115792089237316195423570985008687907853269984665640564039457584007913129640237
Offset: 1

Views

Author

Vincenzo Librandi, Jun 02 2016

Keywords

Comments

Terms given correspond to n = 2, 3, 4, 5 and 8.
Next term >= 2^2^23 + 301. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+301];
    
  • Mathematica
    Select[Table[2^(2^n) + 301, {n, 0, 16}], PrimeQ]
  • PARI
    for(n=1,20, if(ispseudoprime(t=2^2^n+301), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016

A273805 Primes of the form 2^(2^n) + 331.

Original entry on oeis.org

347, 587, 65867, 4294967627, 18446744073709551947
Offset: 1

Views

Author

Vincenzo Librandi, Jun 02 2016

Keywords

Comments

Terms given correspond to n = 2, 3, 4, 5 and 6.
Next term >= 2^2^30 + 331. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+331];
    
  • Mathematica
    Select[Table[2^(2^n) + 331, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=1,6, if(ispseudoprime(t=2^2^n+331), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016

A273806 Primes of the form 2^(2^n) + 357.

Original entry on oeis.org

359, 373, 613, 4294967653, 115792089237316195423570985008687907853269984665640564039457584007913129640293
Offset: 1

Views

Author

Vincenzo Librandi, Jun 02 2016

Keywords

Comments

Terms given correspond to n = 0, 2, 3, 5 and 8.
Next term >= 2^2^24 + 357. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+357];
    
  • Mathematica
    Select[Table[2^(2^n) + 357, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0,8, if(ispseudoprime(t=2^2^n+357), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016

A273807 Primes of the form 2^(2^n) + 427.

Original entry on oeis.org

431, 443, 683, 65963, 4294967723
Offset: 1

Views

Author

Vincenzo Librandi, Jun 02 2016

Keywords

Comments

Terms given correspond to n = 1, 2, 3, 4 and 5.
Next term >= 2^2^27 + 427. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+427];
    
  • Mathematica
    Select[Table[2^(2^n) + 427, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=1,5, if(ispseudoprime(t=2^2^n+427), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016

A273808 Primes of the form 2^(2^n) + 463.

Original entry on oeis.org

467, 479, 719, 4294967759, 340282366920938463463374607431768211919
Offset: 1

Views

Author

Vincenzo Librandi, Jun 02 2016

Keywords

Comments

Terms given correspond to n = 1, 2, 3, 5 and 7.
Next term >= 2^2^27 + 463. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+463];
    
  • Mathematica
    Select[Table[2^(2^n) + 463, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=1,7, if(ispseudoprime(t=2^2^n+463), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016

A273809 Primes of the form 2^(2^n) + 487.

Original entry on oeis.org

491, 503, 743, 4294967783, 115792089237316195423570985008687907853269984665640564039457584007913129640423
Offset: 1

Views

Author

Vincenzo Librandi, Jun 03 2016

Keywords

Comments

Terms given correspond to n = 1, 2, 3, 5 and 8.
Next term >= 2^2^35 + 487. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+487];
    
  • Mathematica
    Select[Table[2^(2^n) + 487, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0,8, if(ispseudoprime(t=2^2^n+357), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016

A273810 Primes of the form 2^(2^n) + 597.

Original entry on oeis.org

599, 601, 613, 853, 18446744073709552213
Offset: 1

Views

Author

Vincenzo Librandi, Jun 03 2016

Keywords

Comments

Terms given correspond to n = 0, 1, 2, 3, and 6.
Next term >= 2^2^23 + 597. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+597];
    
  • Mathematica
    Select[Table[2^(2^n) + 597, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=0,6, if(ispseudoprime(t=2^2^n+597), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016

A273811 Primes of the form 2^(2^n) + 805.

Original entry on oeis.org

809, 821, 1061, 4294968101, 18446744073709552421
Offset: 1

Views

Author

Vincenzo Librandi, Jun 03 2016

Keywords

Comments

Terms given correspond to n = 1, 2, 3, 5 and 6.
Next term >= 2^2^25 + 805. - Charles R Greathouse IV, Jun 07 2016

Crossrefs

Cf. similar sequences listed in A273547.

Programs

  • Magma
    [a: n in [0..16] | IsPrime(a) where a is 2^(2^n)+805];
    
  • Mathematica
    Select[Table[2^(2^n) + 805, {n, 0, 15}], PrimeQ]
  • PARI
    for(n=1,6, if(ispseudoprime(t=2^2^n+805), print1(t", "))) \\ Charles R Greathouse IV, Jun 07 2016
Previous Showing 11-20 of 21 results. Next